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Résumé 

En raison de sa très large consommation et son importance sur le plan alimentation 

humaine, des efforts ont consenti pour améliorer sa qualité. Dans ce contexte, les travaux de cette 

thèse ont été réalisés à l’échelle régionale afin d’évaluer les qualités physicochimiques et 

bactériologiques. De plus, nous avons estimé la variabilité spatiale des concentrations de sept 

métaux lourds (Pb, Cd, Cr, Zn, Fe, Cu and Ni) dans le lait cru de race bovine locale collecté au 

niveau de plusieurs communes du nord-est algérien. Le potentiel risque de la consommation de 

lait pour la santé humaine via une approche théorique (quotient de danger - HQ) a été calculé. De 

plus, une enquête a été exécutée afin de déterminer le potentiel d’adaptation des races bovines 

locales à maintenir leur production laitière sous les effets du changement climatique. Au niveau 

international, l’analyse des taux et l’évaluation du potentiel risque de la consommation du lait 

pour la santé humaine ont été analysés via des approches mathématiques pour deux familles de 

contaminants émergents (les métaux lourds et les pesticides). 

Au niveau local, l’analyse toxicologique des métaux lourds a révélé que dans l’ensemble 

des échantillons analysés (N= 88, 100 %), des concentrations supérieures aux limites maximales 

de résidus (LMR) pour le Pb, Cd et Cu. De plus, 82,95 %, 42,04 %, 15,90 % et 5,68 % des 

échantillons analysés contiennent des concentrations de Zn, Fe, Cr et Ni qui dépassent leurs 

LMR, respectivement. Les valeurs du quotient de danger (THQ) suggèrent que les niveaux de 

Ni, Zn, Cu et Fe ne causaient pas de risque pour la santé des consommateurs. Par ailleurs, les 

résultats indiquent, qu’il peut y avoir un risque, en particulier de Pb, pour les nourrissons.  

L’analyse physico-chimique (N = 122) a montré une qualité du lait acceptable selon le 

Codex Alimentarius, mais sa qualité bactériologique est très mauvaise. L’analyse de l’historique 

du rendement laitier et la comparaison avec les données collectées a révélé un rendement laitier 

par vache très stable. Ce qui suggère que l’exploitation des races locales bovine soit une stratégie 

intéressante d’adaptation face aux effets du changement climatique. Les programmes de 

conservation de ces races peuvent favoriser la biodiversité et maintenir un écosystème équilibré. 

L’éleveur peut bénéficier d’un programme d’amélioration génétique qui peut augmenter la 

productivité et la rentabilité, cependant la lutte contre toute source de pollution doit être une 

priorité pour assurer un produit sain pour le consommateur.  

Au niveau international, l’analyse des données extraites a révélé que le lait cru de vache 

présente des niveaux de contamination aux métaux lourds et aux pesticides, spécialement dans 

les pays en voie de développement (ex. Pakistan, Inde et la Turquie). L’évaluation du potentiel 

risque pour la santé humaine a montré un risque important pour la santé des consommateurs, en 

particulier dans les pays en voie développement : Pakistan, la Colombie, Soudan et l’Égypte. 

En conclusion, la race bovine locale semble une bonne stratégie pour lutter contre les 

effets du changement climatique. Néanmoins, il est fortement nécessaire de surveiller les niveaux 

de contaminations avec les pesticides et les métaux lourds afin d’assurer un aliment sain exempt 

de tout risque pour les consommateurs. 

Mots clés : Lait cru de vache, évaluation de risque pour la santé, changement climatique, 

analyses physico-chimiques et bactériologiques, race locale, contaminants émergeants. 
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Abstract 

Due to the increasing consumption of milk and dairy products in the human diet, efforts 

have been made to improve its quality. This thesis was conducted to assess the physicochemical 

and bacteriological qualities and to determine the spatial variability of seven heavy metals (Pb, 

Cd, Cr, Zn, Fe, Cu and Ni) content in raw milk of local bovine breed collected at the level of 

various communes of the Northeast of Algeria. A theoretical hazard quotient (HQ) indicator was 

used to evaluate the possible risk of milk consumption to human health. Additionally, a survey 

was conducted to identify the potential of local cattle breeds to maintain their production ability 

under global warming. At the international level, the assessment of the potential risk of raw cow 

milk consumption for human health has been studied using mathematical approaches for two 

families of emerging contaminants (heavy metals and pesticides). 

At the national level, the concentrations of Pb, Cd and Cu in all analysed samples (N=88, 

100%) of the study area were higher than their corresponding Maximum Residue Levels 

(MRLs), while 82.95%, 42.04%, 15.90% and 5.68% of Zn, Fe, Cr and Ni samples exceeded their 

MRLs, respectively. The Task Hazard Quotient (THQ) values suggest that the levels of Ni, Zn, 

Cu and Fe in the raw cow milk samples were not causing a health risk for consumers. Moreover, 

the results indicated that there might be a potential risk of toxic metals, especially Pb, for infants 

via the consumption of raw cow milk. 

Physicochemical analysis (N=122) revealed acceptable quality according to Codex 

Alimentarius but poorly bacteriological quality. The analysis of the milk yield history and the 

comparison with the collected data revealed a very stable milk yield per cow, suggesting that 

exploiting local cattle breeds is an interesting adaptation strategy for climate change effects. 

Conservation programs for these breeds can promote biodiversity and maintain a balanced 

ecosystem. The breeder can benefit from a genetic improvement program to increase 

productivity and profitability. However, eliminating any pollution source must be a priority to 

ensure a healthy product for the consumer. 

At the international level, data extracted and then analysed revealed high levels of heavy 

metal and pesticide residues in raw cow milk, especially in developing countries (e.g. Pakistan, 

India and Turkey). Moreover, the evaluation of the potential risk for human health revealed a 

significant human risk, particularly in developing countries such as Pakistan, Colombia, Sudan 

and Egypt. 

In conclusion, the local cattle breed seems to be an interesting strategy to fight against the 

effects of climate change; however, it is strongly recommended to monitor the contamination 

levels with pesticides and heavy metals to ensure healthy food free of any risk. 

Keywords: Raw cow’s milk, health risk assessment, climate change, physicochemical and 

bacteriological analyses, local breed, emerging contaminants. 
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 ملخص

في هذا السياق، أجرت . الحليب نظرًا لاستهلاكه الواسع جدًا وأهميته في التغذية البشرية، تم بذل مجهودات لتحسين جودة

أطروحتنا بحثاً على المستوى الإقليمي من أجل تقييم الخصائص الفيزيائية والكيميائية والبكتريولوجية وتقدير التباين المكاني 

في الحليب الخام لسلالة الأبقار المحلية التي تم جمعها على ( Niو Pb ،Cd ،Cr ،Zn ،Fe ،Cu)يلة لتركيزات سبعة معادن ثق

على صحة الإنسان نتيجة إستهلاك الحليب من  على المخاطر المحتملة التعرف كما تم. مستوى عدة بلديات شمال شرق الجزائر

لتحديد إمكانية تكيف سلالات الماشية  ذلك، تم إجراء تحقيقبالإضافة إلى  .(HQ)خلال حساب النهج النظري لحاصل المخاطر 

 .المحلية للحفاظ على إنتاج الحليب تحت تأثير تغير المناخ

، تم تحليل نسب وتقييم المخاطر المحتملة لاستهلاك الحليب على صحة الإنسان باستخدام مناهج رياضية وطنيالعلى المستوى 

للمعادن الثقيلة أنه  فقد أظهر التحليل السمي على المستوى المحلي، أما (.دن الثقيلة والمبيداتالمعا)لعائلتين من الملوثات الناشئة 

( MRLs)، كانت التركيزات أعلى من الحدود القصوى للمخلفات (٪000عينة،  88)في جميع العينات التي تم تحليلها 

٪ من العينات التي تم 5..8٪ و 08.20٪ و 02.0٪ و 52.28بالإضافة إلى ذلك، تحتوي . للرصاص والكادميوم والنحاس

كما تشير قيم حاصل  .تحليلها على تركيزات من الزنك والحديد والكروم والنيكل والتي تتجاوز حدود مخلفاتها على التوالي

لا تشكل خطراً على صحة المستهلكين، و تشير النتائج كذلك إلى  Feو  Cuو  Znو  Niإلى أن مستويات ( THQ)المخاطر 

 .ه قد يكون هناك خطر محتمل، خاصة من الرصاص للرضعأن

 ذو جودة ، لكنه Codex Alimentariusجودة حليب مقبولة وفقاً لـ ( عينة122 )أظهر التحليل الفيزيائي الكيميائي 

إنتاج الحليب  إنتاج الحليب والمقارنة مع البيانات التي تم جمعها أن مردود كما أظهر تحليل مردودية .بكتريولوجية رديئة جدًا

هذا يشير إلى أن استغلال سلالات الماشية المحلية هو استراتيجية مثيرة للاهتمام نظرا لتكيفها مع آثار  لكل بقرة مستقر للغاية،

أيضا  يمكن. على هذه السلالات أن تعزز التنوع البيولوجي وتحافظ على نظام بيئي متوازن يمكن لبرامج المحافظة. تغير المناخ

يد المربي من برنامج التحسين الوراثي الذي يمكن أن يزيد الإنتاجية والربحية، ولكن يجب أن تكون مكافحة أي مصدر أن يستف

 .للتلوث أولوية لضمان منتج صحي للمستهلك

يدات، جد ملوث بالمب على الصعيد الدولي، كشفت بياناتنا أن حليب البقر الخام يحتوي على مستويات عالية من المعادن الثقيلة و

عامل المخاطر المحتملة على صحة الإنسان عن وجود  كما كشف تقييم (.مثل باكستان، الهند وتركيا)خاصة في البلدان النامية 

.باكستان، كولومبيا، السودان ومصر: مخاطر كبيرة على صحة المستهلكين، ولا سيما في البلدان النامية  

تيجية جيدة لمكافحة آثار تغير المناخ، ومع ذلك، فمن الضروري بشدة مراقبة ختاماً، يبدو أن سلالة الماشية المحلية استرا

 . على المستهلكين مستويات التلوث بالمبيدات الحشرية والمعادن الثقيلة من أجل ضمان غذاء صحي خالٍ من أي خطر

 

فيزيائي والكيميائي والبكتريولوجي، حليب البقر الخام، تقييم المخاطر الصحية، تغير المناخ، التحليل ال :الكلمات المفتاحية

 .الملوثات الناشئة السلالات المحلية،
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Consuming milk and dairy products have been among the most traditional consumption 

habits throughout history. They are viewed as major sources of nutritious foods, especially for 

children and the elders, and are essential for growth, bone development, and immune functions 

in animals and humans because they contain macro- and micronutrients like vitamins and special 

fatty acids, conjugated linoleic acid with nutraceutical action (Boukria et al., 2020; Claeys et al., 

2013; Hansen & Ferrão, 2018; Leksir, Boudalia, Moujahed, & Chemmam, 2019; Malbe, 

Otstavel, Kodis, & Viitak, 2010). In addition, several randomized controlled trials have shown 

that eating three or more servings of dairy products per day has positive effects on nutrients, 

energy intakes, and the need for calcium, magnesium, and vitamin D for adults compared to 

people who had one or fewer portions of dairy foods per day (Rice, Quann, & Miller, 2013).  

In addition to milk's benefits for the human body, global milk consumption per person 

will increase from 10.6 kg to 13.5 kg in developing nations and from 22.2 kg to 23.1 kg in 

advanced countries by 2027 (OCDE/FAO, 2018). According to FAO (2013b), daily milk 

consumption In Algeria is approximately 0.276 kg/ per capita; however, this figure does not 

appear to be in line with the country's regional average for the consumption of milk and dairy 

products in rural and pre-urban areas. Based on a study of 750 consumers in Tebessa region 

(East of Algeria), Bentaleb, Sersar, Bendjama, and Bencharif (2020) found that the daily calcium 

intake (854.4 ± 364.5 mg/day) equated to daily consumption of 0.733 ± 0.312 kg of milk 

equivalent. Moreover, the pre-urban agglomeration purchases about 80% of local output for their 

self-consumption and to supplement breastfeeding. These non-negligible quantities of raw cow 

milk are obtained in an unregulated (black market) method (Belhadia, Yakhlef, Bourbouze, & 

Djermoun, 2014).  Moreover, milk and its derivatives contain necessary minerals for human 

body health including copper (Cu), iron (Fe), and zinc (Zn). These elements can play an 

important role in metabolism and serve a range of biochemical purposes in living organisms and 

are co-factors in several enzymes. However, they may become harmful to human health if 

present in excess in animal and human bodies exceeding sanitary guidelines (Gall, Boyd, & 

Rajakaruna, 2015; Licata et al., 2012; Varol & Sünbül, 2020). Other substances, such as non-

essential elements like cadmium (Cd), lead (Pb), and mercury (Hg), can be harmful even at very 

low doses and have no biological function (Varol & Sünbül, 2020). Additionally, previous 

studies have shown that antibiotics (such as sulfamethoxazole, chloramphenicol, and 

trimethoprim), pesticide residues, phthalates, and bisphenol A can contaminate milk and dairy 
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products globally through animal consumption of contaminated water, feed, veterinary drugs, 

and grass or corn silage, or during transformation (Boudebbouz et al., 2022; Boudebbouz et al., 

2021; Bousbia et al., 2019; Fierens, Van Holderbeke, Willems, De Henauw, & Sioen, 2012; Gill 

et al., 2020; Lu et al., 2021; Santonicola, Ferrante, Murru, Gallo, & Mercogliano, 2019).  

Some of these contaminants can interact with the endocrine system and act as endocrine 

disruptors through non-monotonic dose-response relationships (Auxietre et al., 2014; S. 

Boudalia, Belloir, Miller, & Canivenc-Lavier, 2017; Sofiane Boudalia, Bousbia, Boumaaza, 

Oudir, & Canivenc Lavier, 2021). Humans are consequently exposed to various mixes of these 

pollutants depending on consumption levels, which amplify the consequences, particularly for 

vulnerable populations like infants and young children. This age category is especially 

vulnerable to many contaminants due to their high intake of milk and dairy products, their body 

weight and the immaturity of their defence mechanisms against chemical stressors (Nougadère et 

al., 2020). 

Due to their ability to pass the placental barrier, heavy metals like lead (Pb) and cadmium 

(Cd) can have neurotoxic effects on developing fetal brains, including intelligence quotient IQ 

decline, memory loss, and language impairment (Khalil et al., 2009; Payton, Riggs, Spiro, Weiss, 

& Hu, 1998; Rehman, Fatima, Waheed, & Akash, 2018; Schwartz et al., 2000). Furthermore, the 

estrogenic activity of cadmium can be harmful to reproductive systems by upsetting the 

androgen-estrogen ratio and increasing the levels of steroidal hormones, both of which are 

associated with an increased risk of breast cancer (Johnson et al., 2003; Nagata, Nagao, Shibuya, 

Kashiki, & Shimizu, 2005). They may result in renal failure, an increase in blood pressure, and a 

decline in intelligence quotient (Malhat, Hagag, Saber, & Fayz, 2012); teratogenic, carcinogenic, 

and neurotoxic (Flora & Agrawal, 2017; Zhong et al., 2018); neurologic and immunologic 

(Ismail et al., 2017); cytotoxicity (Rahmani et al., 2018); Wilson's disease, cramps and nausea 

(Lawal, Mohammed, & Damisa, 2006). 

In the same way, pesticide residues including organochlorine, organophosphorus, 

carbamate, and synthetic pyrethroid can build up as organic pollutants in fatty base foods like 

milk and dairy products, which when consumed by humans can lead to cancer and damage to the 

neurological, immunological, and endocrine systems (Ramezani et al., 2022). They can easily 

reach the food chain and build up in the fatty texture of both people and animals. Due to 
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excessive toxicity, food quality may be compromised, resulting in a risk to human health, 

including genetic abnormalities, cancer, congenital impairments, and nervous system illnesses 

(Mir et al., 2022; Tajdar-oranj, Peivasteh-roudsari, Mahdavi, Keikavousi Behbahan, & Mousavi 

Khaneghah, 2021). 

In addition to this, global warming and climate change can exacerbate these pollution 

effects on, agriculture, human and animal health. In a two-way process (interaction), climate 

change is one of the main drivers of ecosystem disruption, but this ecosystem disruption 

undermines nature's ability to regulate greenhouse gas (GHG) emissions and protect against 

extreme weather, thus accelerating climate change and increasing vulnerability to it. Regardless 

to forestry or changes in land use, the agriculture industry produced 12.3 million tons of CO2 

equivalent (MtCO2e) GHG emissions in 2012 in Algeria. This amount corresponds to 5.63% of 

the total emissions (219 MtCO2e) (Climate Watch, 2021; FAO, 1997). More than 83% of all 

agricultural emissions come from livestock, with enteric fermentation accounting for the 

majority (approximately 5.5 MtCO2e) and manure left on pastures for the remainder (4.5 

MtCO2e) (Climate Watch, 2021). Nearly 10% of the population in Algeria is affected by 

drought, which is ranked 18
th

 out of 184 nations by Prevention Web (3,763,800 people) (WBG, 

2022).  

Additionally, some studies have predicted a 5–30% decrease in annual total rainfall (Christensen 

JH, 2007). Climate change, whichis explained by both increasing temperatures and decreasing 

precipitation, is dislodging the northern temperate zone in favor of the desert (Zeroual et al., 

2020; Zeroual, Assani, Meddi, & Alkama, 2019). Moreover, in the upcoming years, these effects 

are anticipated to be severe, extensive, and irreversible (IPCC, 2019; Mariotti, Pan, Zeng, & 

Alessandri, 2015; Zeroual, Assani, & Meddi, 2016) putting risk food and nutrition security, 

agricultural productivity, and animal production (FAO, 2013a). The level of heat stress that cows 

suffer depends on a variety of meteorological parameters, including ambient temperature, radiant 

energy, photoperiod, relative humidity (RH), and wind speed (Hammami, Bormann, M’hamdi, 

Montaldo, & Gengler, 2013). Milk production decreases as a result of dairy cows using 

behavioral and physiological strategies to deal with heat stress, such as cutting back on feed and 

drinking more water to reduce metabolic heat production (Herbut, Angrecka, & Walczak, 2018). 

As a result, the dairy cow has to be in its thermoneutral zone, a range of temperatures where it 

can maintain its body temperature without having to waste more energy (Marumo, Lusseau, 
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Speakman, Mackie, & Hambly, 2022). As an illustration, the Holstein dairy cow prefers 

temperatures between 5°C and 25°C (the lower and higher critical temperatures, respectively) 

(Kadzere, Murphy, Silanikove, & Maltz, 2002; Marumo et al., 2022). Subsistence farmers in 

developing countries will feel the consequences of increased heat stress on cows more acutely as 

climate change and global warming progress(Ekine-Dzivenu et al., 2020; Hernández et al., 

2011). Local dairy breeds are typically less susceptible to disease than imported bovine breeds 

because of their metabolism, which is linked to excessive heat production and the challenges of 

sustaining isotherm in hot regions(Bernabucci et al., 2014). These indigenous species can also 

endure challenging weather conditions like high heat, droughts, and a lack of nutrients and water 

(Sejian et al., 2015). Apart of the threat posed by climate change, the decline in the number of 

native cattle breeds, and the import of new breeds less resistant to local climatic conditions like 

high temperatures and humidity, drinking raw cow milk is growing in popularity and may be 

harmful to people's health. This is encouraged by the notion that heating milk renders it less 

nutritious and healthful, and may even have adverse effects (Claeys et al., 2013). 
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1. Emerging contaminants-Climate-driven milk changes 

Milk and dairy products are a type of food that is seen as attractive and valued, and they are 

vital sources of nutrition for people of all ages, especially for children, adults and elderly people 

(Xin Li et al., 2019). Milk composition differs significantly among species because breast (or 

Udder) secretion is physiologically and physically tied to the nutritional requirements of new-

borns from each species (Birhanu, Mohammed, Kedebe, & Tadesse, 2015; Saha, Malchiodi, 

Cipolat-Gotet, Bittante, & Gallo, 2017). Several factors have been reported to influence milk 

composition, such as seasons, lactation phases, diseases, and feedings (Renhe, Perrone, Tavares, 

Schuck, & de Carvalho, 2019), parity estrus, diurnal and environmental temperature (Park, 

Albenzio, Sevi, & Haenlein, 2013), and milk structure, which defined as the physical 

configuration of chemical elements(Lopez, 2011). Table 1 shows the average composition of the 

elements that appear in the highest concentrations for the three principal commercial species: 

cow’s milk, buffalo’s milk, and goat’s milk, which underlines the variability among the three 

species (Renhe et al., 2019). 

Table 1: Comparative composition of cow’s milk, buffalo’s milk, and goat’s milk 

Composition (g.100 g21) Cow Buffalo Goat 

Total dry matter 12.7 17.6 12.5 

Lipids 3.7 7.0 3.8 

Casein 2.6 3.5 4.7 

Whey proteins 0.6 0.8 0.4 

Lactose 4.8 5.2 4.1 

Ash 0.7 0.8 0.8 

Source: Renhe et al. (2019) 

Milk is high in macro- and micronutrients such as lipids and proteins (polyunsaturated 

fatty acids), calcium, phosphorus, essential amino acids, carbohydrates, vitamins, and a variety 

of important bioactive substances for biochemical and physiological processes. Furthermore, 

enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) as well as non-enzymatic 

(lactoferrin, casein, a-LA, b-LG, tryptophan, cysteine, tyrosine, lysine, carotenoids, uric acid, 

vitamins A, C, and E) antioxidants have also been discovered in the milk of many mammalian 

species. As a result, milk appears to have health-promoting and functional effects against the 
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generation of reactive oxygen species and oxygen-free radicals, which would otherwise cause 

oxidative stress (Baniasadi, Azizkhani, Saris, & Tooryan, 2022). 

Given its nutritional importance, milk consumption per capita has increased in developed 

countries from 22.2 kg in 2015 to 23.1 kg in 2017 and from 10.6 kg in 2015 to 13.5 kg in 2017 in 

developing countries (OCDE/FAO., (2018)). Furthermore, in the last three decades, world milk 

production has increased by more than 59%, from 580 million tons in 1988 to 843 million tons in 

2018 (FAO, 2018). Also, by 2050, the global population is expected to reach 9.7 billion, an 

increase of around one-third from 2015 (Food and Agricultural Organization, 2018). It is a 

challenge that involves supplying more food for a growing population and considering health 

inequalities such as malnutrition and obesity (Henchion, Moloney, Hyland, Zimmermann, & 

McCarthy, 2021). 

In Algeria, FAO (2013b) reported that the per capita milk consumption is about 0.276 

kg/day; however, this value does not seem to correspond to the regional value of milk and dairy 

product consumption in the rural and pre-urban areas. Using a survey of 750 consumers in the 

Tebessa region (east of Algeria), Bentaleb, Sersar, Bendjama, and Bencharif (2020) reported that 

the daily calcium intake (854.4±364.5 mg/day) corresponded to daily consumption of 

0.733±0.312 kg of milk equivalent. Moreover, Belhadia, Yakhlef, Bourbouze, and Djermoun 

(2014) reported that a non-negligible quantity of raw cow milk is used to supplement 

breastfeeding and family self-consumption and is also sold through uncontrolled (informal to 

the) pre-urban agglomeration (80% of local production). These important quantities were not 

included in official data on milk consumption in Algeria. Furthermore, it is estimated that 

informal market traders handle almost 80% of the milk market. Milk produced by dairy cattle 

farms, especially from extensive livestock, is sold directly to urban markets (Sraïri, Benyoucef, 

& Kraiem, 2013). Therefore, the safety of raw cow milk must be assured, even more so when 

80% of this milk is consumed directly by rural and pre-urban populations (Belhadia et al., 2014). 

Milk production in Algeria comes mainly from the intensive livestock system (breeding 

of imported breeds such as premium Holstein, Montbéliarde, Normande and Charolaise) and the 

extensive livestock system (local breeds) known as “Brune de l’Atlas” (Brown Atlas). They are 

little animals that have evolved to withstand extreme climate conditions, limited food resources, 

sickness, and parasites (Ben Jemaa et al., 2018). Other names for Maghreb indigenous cattle 
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have been given to them based on their geographical origin and morphological traits. For 

example, “Guelmoise (grey)”, “Cheurfa (white)”, “Krouminiène”, “Chelifienne”, “Sétifienne”, 

Tlemcenienne (tawny), and “Djerba” populations originated in Algeria are highly suited to both 

hard climate conditions and limited food resources, as well as disease and parasites that are 

common in northern Algeria’s mountainous and forests environments (Boushaba et al., 2019; 

Rahal et al., 2021). Indigenous breeds have special features, resistant to severe environmental 

circumstances and diseases, and are well adapted to the location where they are raised. 

The Algerian population has more than doubled from 13.7 in 1970 to 37.1 in 2021 

(Mamine, Bourbouze, & Arbouche, 2011). However, their number is considered very low (1.6 

million in 2012) compared to other countries, such as Morocco, with 2.8 million cattle (Sraïri et 

al., 2013). Official policies in the country favour an increase in average milk yield per cow rather 

than an increase in cattle numbers. One of the most effective strategies used to accomplish this 

rise in milk yield was a program of crossbreeding local strains with high genetic merit breeds, 

such as the Holstein, Montbéliarde, and Brown Swiss (Sraïri et al., 2013). As a result, pregnant 

heifer imports have increased to 387,000 since the early 1960s. In addition to cattle imports, 

Algerian authorities have initiated artificial insemination (AI) programs employing the semen of 

high genetic merit dairy cattle (Sra'I'ri & Farit, 2001). As a result of this politic, the genetic 

structure of the dairy herd in Algeria deteriorated, resulting in a sharp drop in the number of 

indigenous animals. Consequently, the percentage of indigenous cattle breeds in the population 

has decreased from 82 per cent in 1986 to around 48 per cent in 2016 (FAO, 2012; Mohamed-

Brahmi et al., 2022). 

As mentioned previously, Algerian local cattle breed are highly suited to both hard 

climate conditions and limited food resources, as well as disease and parasites, but the milk yield 

remains low (1175 litter/cow/year (Mamine et al., 2011)) compared to the imported cattle which 

vary from 1480 to 6703 litter/cow/year) depending on the temperature in each region (Bouzida, 

Ghozlane, Allane, Yakhlef, & Abdelguerfi, 2010). 

However, it is important to note that the performance of imported breeds is lower in hot 

environments than in their native environments (Madani & Mouffok, 2008; Nigm, Sadek, 

Yassien, Ibrahim, & El-Wardani, 2015). It is well established in the literature that when dairy 

cattle are under heat stress, there is an increase in water intake and a decrease in dry matter, 
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protein and fat content of milk as well as milk yield (Gorniak, Meyer, Südekum, & Dänicke, 

2014). The microbiological qualities of milk are also affected because contamination and 

pathogen proliferation increase under excessive heat and humidity (Montcho et al., 2021), 

resulting thus in economic loss from dairy farms (Bohmanova, Misztal, & Cole, 2007; Martín-

Sosa, Martín, García-Pardo, & Hueso, 2003). On the other hand, local breeds can perform well in 

adverse climatic conditions like high temperature, drought, feed and water scarcity (Sejian et al., 

2015a) because they are more robust and genetically better adapted to their environment 

(Rodríguez-Bermúdez et al., 2019). Moreover, since the beginning of the 20th century, 

industrialization, urbanization, agriculture mechanization and intensification have led to 

increased environmental pollution (such as heavy metals and pesticides), negatively impacting 

livestock systems and milk quality. 

1.1. Climate change effects on milk quality and production 

For many decades, persistent challenges to the food system, such as rising greenhouse 

gas (GHG) emissions and temperature, decrease in precipitation, loss of natural ecosystems, and 

decreased biodiversity as a result of increased land and freshwater consumption to feed a 

growing population (IPCC, 2019), lead to the realization that is existing food production and 

consumption habits are unsustainable (Steenson & Buttriss, 2020). Global (COP 21: United 

Nations Framework on Climate Change Paris Agreement) and regional (European Union Farm to 

Fork strategy (European Commission, 2020)) promises to reduce Greenhouse gas (GHG) 

emissions, improve water quality and biodiversity, combat antibiotic resistance, and improve 

diets and health. The agriculture sector faces a huge challenge in becoming an important part of 

the solution (Henchion et al., 2021). 

In Algeria, the agriculture sector contributed 12.3 million tons of CO2 equivalent 

(MtCO2e) GHG emissions in 2012, ignoring land-use change and forestry. This value represents 

5.63 per cent of total emissions (219 MtCO2e) (Climate Watch, 2021; FAO, 1997). Livestock 

emissions account for more than 83 per cent of overall agricultural emissions, with enteric 

fermentation accounting for the most (about 5.5 MtCO2e) and manure left in pasture accounting 

for the rest (4.5 MtCO2e) (Climate Watch, 2021). According to Prevention Web, Algeria is 

ranked 18th out of 184 countries most vulnerable to drought, affecting almost 10% of the 

population (3,763,800 people) (WBG, 2022). 



   

11 
 

Moreover, some studies have suggested a projected decline in total annual rainfall of 15-

30% (Christensen JH, 2007), desert climatic expansion at the expense of the northern temperate 

zone, which is explained both by growing temperature and precipitation decreasing (Zeroual et 

al., 2020; Zeroual, Assani, Meddi, & Alkama, 2019). Furthermore, these consequences are 

expected to be “severe, extensive, and permanent” in the coming years (IPCC, 2019; Mariotti, 

Pan, Zeng, & Alessandri, 2015; Zeroual, Assani, & Meddi, 2016), posing a danger to animal 

production, agricultural yields, and food and nutrition security (FAO, 2013a). 

Meteorological factors such as ambient temperature, radiant energy, photoperiod, relative 

humidity (RH), and wind speed all play a role in the degree of heat stress experienced by cows 

(Hammami, Bormann, M’hamdi, Montaldo, & Gengler, 2013). Dairy cows adopt behavioural 

and physiological methods to cope with heat stress, such as reducing feed intake and drinking 

more water to minimize metabolic heat production, decreasing milk supply (Herbut, Angrecka, 

& Walczak, 2018). Therefore, the dairy cow must be in its thermoneutral zone, a temperature 

range in which it does not have to increase its energy expenditure to maintain a constant internal 

body temperature (Marumo, Lusseau, Speakman, Mackie, & Hambly, 2022). For example, the 

Holstein dairy cow prefers a temperature range of 5°C (lower critical temperature) to 25°C 

(higher critical temperature) (Kadzere, Murphy, Silanikove, & Maltz, 2002; Marumo et al., 

2022). 

As climate change and global warming grow, the intensity of heat stress effects on cows 

will aggravate, and this impact will be felt more by subsistence farmers in developing countries 

(Ekine-Dzivenu et al., 2020; Hernández et al., 2011). Local bovine breeds are generally more 

resistant to disease than imported dairy breeds, whose metabolism is linked to excessive heat 

production and the difficulties of maintaining isothermic in hot environments (Bernabucci et al., 

2014). These native varieties may also survive in harsh climatic conditions such as high 

temperatures, drought, and a lack of feed and water (Sejian et al., 2015b). Apart from the risk of 

climate change, the drop in the number of local cattle breeds and the importation of other breeds 

less resistant to climatic conditions in the country, such as high temperature and humidity, 

consumption of raw cow milk could pose a risk to human health. Consumption of raw milk is 

getting more popular. This is fuelled by the belief that boiling milk loses its nutritional and 

health benefits and can even have negative consequences (Claeys et al., 2013).  
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1.2. Emerging contaminants 

Since the beginning of the 20
th

 century, industrialization, urbanization, and agriculture 

mechanization and intensification have increased environmental pollution, negatively affecting 

livestock systems and milk production (yield and quality). Among these contaminants, we can 

find heavy metals and pesticides. 

It has been discovered that the primary cause of food and feed contamination with 

emerging contaminants such as pesticides and heavy metals in milk resides in a transfer (external 

environment - internal environment). Cows can absorb contaminants through water and grass 

that have been polluted by a variety of sources, including industrial waste that is carelessly 

discharged into the environment, pesticide residues from agricultural use, water released from 

metropolitan areas, and in some areas, by natural processes like volcanic activity, where fine 

particles are released into the air, then transferred to the water and soil (Numa Pompilio, 

Francisco, Marco Tulio, Sergio Samuel, & Fernanda Elisa, 2021). Hence, the presence of heavy 

metals and pesticide residue compounds in milk is not only a direct indication of its hygienic 

condition but also an indirect indication of the environmental contamination where it is produced 

(González-Montaña, Senís, Gutiérrez, & Prieto, 2012). 

1.2.1. Heavy metals 

Heavy metals are a group of a term used for metals and semimetals (also known as 

metalloids) that have been linked to contamination and possible toxicity and ecotoxicity (Duffus, 

2002). On the other hand, Heavy metal terminology has diverse definitions based on laws and 

scientific studies. Before 1936, there was no such thing as a definition (Duffus, 2002). Heavy 

metals such as cadmium (Cd), lead (Pb), mercury (Hg), nickel (Ni), chromium (Cr), arsenic (As), 

copper (Cu) and zinc (Zn) can be characterized as components having a particular gravity over 5 

g/cm
3
, or atomic weights within the range of 63.5–200.6 g/mol (Zhou, 2019). Heavy metals are 

toxic to humans even at lower concentrations (Gumpu, Sethuraman, Krishnan, & Rayappan, 

2015; Tekaya et al., 2013). With the fast advancement of the economy and society, heavy metal 

contamination has become one of the most widespread environmental issues around the world, 

with unfavourable effects on the oceanic, terrestrial, and atmospheric environments (Mishra et 

al., 2019). Copper, nickel, and zinc are required for life in very low quantities (also known as 

microelements or trace elements) because they play vital roles in metabolic processes in living 

cells. However, high concentrations of these metals are toxic to most organisms, including 
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animals, plants and humans (Gadd & White, 1993; Kaplan, 2013). Table 3 shows the reliable 

food sources, stability, associated body systems, functions, deficiency, and toxicity symptoms of 

these metals. 

Other heavy metals, including cadmium, lead, and mercury, are non-essential and have 

been shown to harm species at extremely low doses. Metals can be found in the environment in 

various chemical forms (metal speciation), such as ions dissolved in water, vapours, salts or 

minerals in rocks, sand, and soils. Toxic metals, such as arsenic, cadmium, lead, and mercury, 

tend to bioaccumulate in critical organs and tissues. Excessive accumulation of these metals can 

be harmful or lethal to organisms (Gupta Mahendra, Kiran, Amita, & Shikha, 2014; Nagajyoti, 

Lee, & Sreekanth, 2010).  

Heavy metal toxicity has a deleterious influence on humans and animals, as heavy metals 

are known to cause neurotoxicity, nephrotoxicity, fetotoxicity, and teratogenicity in humans 

(Mishra et al., 2019). They may induce blood and circulatory system disruptions, alterations in 

detoxification pathways (colon, kidney, liver, and skin), and gastrointestinal, reproductive, and 

mental system disorders (Abdulkhaliq, Swaileh, Hussein, & Matani, 2012; Iftikhar, Arif, 

Siddiqui, & Khattak, 2014). More precisely, it may cause changes in mental and neurological 

functions, as well as changes in neurotransmitter production and utilization, intellectual and 

behavioural deficits, hyperactivity, neuro disorders, decreased intelligence quotient, and 

endocrine disorders, which are all common in infants and young children who are directly 

exposed to heavy metal contamination (Bischoff, Higgins, Thompson, & Ebel, 2014; Jusko et al., 

2008). 

Figure 1 highlights the food chain routes through which the population is exposed to metal 

poisoning. Plant-animal-human and/or soil-plant-human and/or soil-water-animal could be 

potential metal accumulation food chain pathways in human populations (Purakayastha & 

Chhonkar, 2010). In developed countries, the concentration of heavy metals in the environment 

is decreasing because of the strict regulations on the production and usage of various chemicals, 

whereas, in developing countries, the release of these contaminants is not regulated (Birhanu et 

al., 2015). Heavy metal is a serious concern in developing countries due to unmanaged pollution 

in the environment, and it has been found in a variety of foods, including livestock, aquatic 

animals, processed foods, pistachio, milk and honey (Naseri, Salmani, Zeinali, & Zeinali, 2021; 

Sobhanardakani, Tayebi, & Hosseini, 2018).  
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Figure 1: Possible pathways humans may be exposed to trace metals. (Adapted from 

(Purakayastha & Chhonkar, 2010) 

Due to its intake by age groups most susceptible to heavy metal toxicity, milk is under 

severe regulatory scrutiny. Because of their high toxicity, several regulatory organizations have 

set permitted limits for heavy metals in different foods, including milk and dairy products. 

Values from the EPA, the Agency for Toxic Substances and Disease Registry (ATSDR) and the 

Joint FAO/WHO Expert Committee on Food Additives (JECFA) were used to determine daily 

maximum acceptable exposure levels for heavy metals. These exposure limits are typically 

referred to as “Oral Reference Dose,” “Provisional Total Daily Intake,” or “Minimal Risk Level” 

by these different agencies. Their goal is the same, regardless of the method used to derive them. 

All of the model’s reference values come from dose-response data that compares exposures to 

observed effects in humans or laboratory animals (Wang, Su, Gu, Song, & Zhao, 2017). 

European Commission (2002) laying down the general guidelines and requirements of 

food regulation and launching the European Food Safety Authority (EFSA) and procedures in 

food safety sets out the basis for this harmonization. In the pursuit of community policy, a high 

level of protection of human life and health should be ensured, and free movement of food and 

feed within the community can only be realized if food and feed safety criteria do not vary 

markedly from Member State to Member State. 
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In its appendix, European Commission (2006) (as modified) establishes maximum limits 

for various pollutants in foods, including the metals lead, cadmium, mercury/methyl-mercury, 

and inorganic tin in various foods. The European Commission’s typical framework of Expert 

Working Groups and Committees routinely reviews and adds to the limits in this regulation, 

which are immediately applicable in all member states (unless temporary derogations are 

approved) and to all imports. Expert risk assessments are considered to determine the maximum 

limits in food. The European Food Safety Authority (EFSA) is in charge of this role, while the 

Joint FAO/WHO Expert Committee on Food Additives (JECFA) of the World Health 

Organization (WHO) and the Food and Agriculture Organization (FAO) of the United Nations is 

in charge of Codex Alimentarius Commission (Hargin & Shears, 2013; Udimal et al., 2022). 

In addition, default exposure limits for five metals often found in food (e.g., arsenic, 

cadmium, chromium [III and VI], lead, and mercury) were calculated with a metal dietary 

exposure screening tool (MDEST) using publicly accessible chronic daily exposure limits such 

as the tolerated daily intake (TDI), provisional TDI (PTDI), or oral reference doses (RfDs). 

Background exposure from food and water sources was considered MDEST’s default exposure 

limits, often known as the “MDEST portion.” By deducting a high-end background exposure 

estimate from the relevant TDI or RfD, the MDEST fraction is calculated (Tran, Barraj, 

Scrafford, Bi, & Troxell, 2015). The values of MRL, TDI or Rfd of different heavy metals are 

shown in table 2. 

Table 2: Maximum residues limit (MRL), Provisional Tolerable Daily Intake (PTDI)/ 

Recommended Daily Allowances (RDAs) of heavy metals in milk 

Element MRL mg/kg PTDI/ (mg/kg 

BW/day) 

RDAs mg/kg 

Pb 0.02 0.0036 - 

Cd 0.0026 0.00083 - 

Cr 0.2 0.3 - 

Ni 1 - 1 

Zn 3.28 25 - 

Fe 0.37 - 45 

Cu 0.01 - 0.9 

1.2.1.1. Lead 

According to Agency for Toxic Substances and Disease Registry ATSRD (2015), lead is 

considered the most hazardous heavy metal pollutant after arsenic. Lead could be present in the 
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environment from crustal sources, the background concentration of lead in seawater is about 

0.003 ppb, and it is the 37
th

 most abundant element in the Earth’s crust (Sarkar D, Datta R, & R, 

2011). Moreover, lead could be found in the environment from natural activities, including 

volcanic activity, geochemical weathering, sea spray emissions, forest fires, the erosion of rocks 

and soils, volcanic eruption and remobilization of historic sources UNEP (2010). However, 

environmental lead comes mainly from anthropogenic activities such as mining, smelting and 

refining operations. Further, lead is used daily in numerous manufacturing products such as 

pesticides, glassware, paints and batteries Tangahu BV (2011). Lead is the top poisonous 

aggregate environmental contaminant due to its mobility and toxicity in soil, plant and human 

system because of its perseverance within the environment that influences different body 

organisms and is especially destructive to youthful children (Assi, Hezmee, Sabri, & Rajion, 

2016). According to WHO (2013), about 1.43 million cases of death happen due to lead 

poisoning every year, along with 6.0 million new cases of children with intellectual disabilities. 

In addition, in 2017, the Institute for Health Metrics and Evaluation estimated 1.06 million 

deaths and 24.4 million Disability-Adjusted Life Years (DALYs), including years lost due to 

premature death and years lived with a proven disability due to lead exposure (IHME, 2015). 

However, Lead has not been known to have any role in biological systems, including humans, 

animals and plants (Giri, Mahato, Bhattacharjee, & Singh, 2020). 

The concentration of lead in the human body higher than the MRLs may cause a serious 

effect on several organs like the brain, gastrointestinal tract, nervous system and kidney 

(Baldwin & Marshall, 1999), it can also severely affect cardiovascular, reproductive, and renal 

functions (Abdullahi, 2013; FAO/WHO, 2011), raise blood pressure and reduction in intelligence 

quotient (Malhat, Hagag, Saber, & Fayz, 2012). In addition, NSC (2009) reported that a high 

concentration of lead exacerbated headache, constipation, loss of appetite and anaemia. 

1.2.1.2. Cadmium 

According to the Agency for Toxic Substances and Disease Registry ATSRD (2015), Cd 

is the eighth most dangerous and toxic metal. Cadmium is classified as carcinogenic to humans 

by International Agency for Research on Cancer IARC (1991). Humans and animals are more 

likely to be affected by Cd contamination by inhalation or ingestion from various sources, 

including metal industries, rotten and wasted food, cigarettes, and Cd products associated with 
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factories and workplaces (IARC, 1990; Mishra et al., 2019). Cadmium is not degraded 

metabolically; very toxic for humans (teratogenic, carcinogenic, hepatotoxic, nephrotoxic, 

skeletal, and reproductive effects) even at very low concentrations (0.35 µg/kg and 0.30 µg/kg) 

for men and women, respectively (Jarapala SR, 2014) with a long half-life (15–30 years) (Flora 

& Agrawal, 2017; Zhong et al., 2018). Furthermore, several organs could be affected by 

cadmium accumulation. It is effectively kept in the kidney for 10–30 years, causing bone injury 

due to kidney damage (Chirinos-Peinado & Castro-Bedriñana, 2020; Mazzocco et al., 2020). It 

could also cause several cancers type due to its bioaccumulation in the liver, the lungs, urinary, 

reproductive, and cardiovascular systems (Amegah, Sewor, & Jaakkola, 2021; Chirinos-Peinado 

& Castro-Bedriñana, 2020; Tinkov et al., 2018), it can also disrupt steroidogenesis, resulting in a 

testosterone imbalance that disrupts endocrine function (Bazid, Attia, Yousef, Fawal, & Mostafa, 

2022; Ranganathan, Rao, Sudan, & Balasundaram, 2018).  

Laboratory studies have shown that cadmium has a negative impact on adipose tissue 

physiopathology, contributing to increased insulin resistance and diabetes. However, 

uncertainties about the link between Cd exposure, diabetes, and obesity persist (Tinkov et al., 

2017). Cd toxicity is linked to iron, zinc, selenium, magnesium, potassium, chromium, cobalt, 

and copper deficiency, and their toxicity is linked to pro-inflammatory properties, oxidative 

stress, genotoxicity, and the development of atherosclerosis, though the evidence is still limited 

(Mazzocco et al., 2020; Tinkov et al., 2017; Tinkov et al., 2018). The release of Cd from natural 

sources is 10 times lower than that of anthropogenic activities such as mining and smelting 

operations, waste disposal, metal smelting and electroplating and fertilization (DalCorso, 

Farinati, Maistri, & Furini, 2008; J. Liu, Zhang, Qu, & Wang, 2016). Cadmium in food can occur 

from polluted soil, which was contaminated by irrigation water, or from deposition caused by air 

pollution, phosphate fertilizer, or livestock manure used as fertilizer (Rebelo & Caldas, 2016). 

Furthermore, the highest mean concentrations were recorded in edible offal, legumes, grains, and 

potatoes (EFSA, 2009; Rebelo & Caldas, 2016). 

1.2.1.3. Nickel 

Nickel (Ni) is ubiquitous in nature; it is the 22
nd

 most prevalent element in the earth’s 

crust (twice as Cu) and a vital trace metal. It accounts for about 0.008% of the earth’s crust in the 

forms of sulphide and silicate minerals (Hedfi, Mahmoudi, Boufahja, Beyrem, & Aïssa, 2007; 
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Shahzad et al., 2018). Ni is an indispensable mineral component for humans. It functions as a 

cofactor for various enzymes and hormones such as urease, [NiFe]-hydrogenase, carbon 

monoxide dehydrogenase and, acetyl-CoA synthase, coenzyme M reduction (Ismail et al., 2017; 

Zamble, 2017).  

The human body requires a daily intake of approximately 0.3− 0.6 mg of Ni to produce 

red blood cells and is used as a catalyst for various metabolic reactions (Khodadoust, Reddy, & 

Maturi, 2004; Mishra et al., 2019; Yang & Ma, 2021). However, it may become toxic and lead to 

cell damage, alteration of enzyme and hormone activities, oxidative stress and neurotoxicity 

above this daily intake value (Ismail et al., 2017). Although nickel is not a cumulative toxin, 

greater concentrations and industrial exposure make it hazardous and even carcinogenic, causing 

occupational hazards (Mishra et al., 2019). Nickel is found in various foods, and the human body 

is expected to have 10 mg of nickel (Mislankar & Zirwas, 2013; Zirwas, 2018). Some vegetables 

have high nickel content, but the amount of nickel in any given food varies substantially 

depending on the nickel level of the soil where it was grown (Mislankar & Zirwas, 2013). 

Ambient air contains nickel due to industrial activity, fossil fuel burning, and waste incineration 

(Mansour, 2014). Inhalation, ingestion, and cutaneous contact can lead to human exposure. 

Furthermore, elemental nickel, nickel compounds, complexes, and alloys, as well as fumes from 

alloys used in welding and brazing, can induce occupational exposure (Yoon, Han, & Rana, 

2007). 

1.2.1.4. Zinc 

Zinc is the 29
th

 most abundant metal in the Earth’s crust. In fact, with background values 

of 10–100 mg/kg, Zn is one of the most plentiful elements on Earth (Xingyuan Li, Zhou, & 

Zhang, 2021). Human activities like mining and metal smelting are mostly responsible for 

increasing Zn in the environment (F.-l. Li, Shi, Jin, Wu, & Sheng, 2017). More than 300 

enzymes belonging to six major categories, namely oxidoreductases, transferases, hydrolases, 

lyases, isomerases, and ligases, require zinc as a cofactor (Mansour, 2014; McCall, Huang, & 

Fierke, 2000; Pajarillo, Lee, & Kang, 2021), this shows its importance, in a variety of biological 

functions and activities, including immunity and cell survival, growth, development, and health 

(Bakirdere, Kizilkan, & Yaman, 2011; J. Cao et al., 2016; Karaaslan Ayhan & Yaman, 2022; Yin 

et al., 2017). Zinc also plays essential functions in metabolic synthesis, degradation processes, 
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and plasma membrane stabilization (Karaaslan Ayhan & Yaman, 2022; Shils, Olson, & Shike, 

1994). Moreover, Zn plays a role in cellular growth protection and neoplastic cell formation 

(Chanihoon, Afridi, Talpur, Kazi, & Baig, 2022; Kolachi, Kazi, Afridi, Kazi, & Khan, 2012), 

and it is well known that Zn aids in the synthesis of glutathione peroxidase, a protective enzyme 

that protects humans from oxidative and free radical damage (Kurutas, 2016) (Torgovnick & 

Schumacher, 2016).  

It is essential to evaluate the amount of these components absorbed through food because 

excessive or insufficient consumption can result in nutritional deficiency symptoms as well as 

could lead to a variety of diseases such as loss of appetite, growth retardation, skin changes and 

immunological abnormalities (Younas, Fatima, Ahmad, & Ayyaz, 2022). Other diseases like 

poor growth and development, skin rashes, decreased immune function, loss of taste and poor 

wound healing could also appear due to the lack of these components (Jarapala, Kandlakunta, & 

Thingnganing, 2014; Martínez-Ballesta et al., 2010). Zinc deficiency is a major problem that can 

induce development retardation, pathogenic infection, immunological dysfunction, and 

decreased cognition in humans. Nearly 2 billion people, mostly children and the elderly, are 

afflicted in underdeveloped nations (Pajarillo et al., 2021; Prasad, 2003). Also, mental function 

issues might be caused by zinc insufficiency (Roney et al., 2006). Excessive zinc exposure has 

been linked to toxic effects such as metabolic dysfunction and oxidative damage, implying that 

zinc levels in the body must be carefully monitored and maintained to avoid serious harm and 

health concerns (Becker & Skaar, 2014). Excess Zn can impede Fe species, causing 

haematopoiesis to be disrupted and resulting in iron deficiency anaemia in humans (Du, Yang, 

Peng, Liang, & Mao, 2019; Xingyuan Li et al., 2021). 

1.2.1.5. Iron 

Iron (Fe) is the most abundant trace mineral in the body and is an essential trace element 

that participates as a catalyst in several metabolic reactions. In mammals, haemoglobin contains 

approximately 70% iron, while myoglobin contains only about 5% to 10%. Iron is required to 

transport, store, and consume oxygen (Meshref, Moselhy, & Hassan, 2014). It is a cofactor for 

enzymes such as peroxidase, catalase, and cytochrome (Mansour, 2014), and a lack of it can 

cause anaemia and other diseases like pale red blood cells, low haemoglobin, weakness, pallor, 

headaches, reduced immunity, inability to concentrate and cold intolerance. Early infancy’s iron 
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needs are provided by the small amount of iron in human milk. The demand for iron increases 

exponentially 4–6 months after birth, peaking at around 0.7–0.9 mg/day for the rest of the first 

year. Between 1 and 6 years, the body’s iron content doubles again (FAO/WHO, 2004). 

Adolescents’ iron requirements are extremely high (0.7–0.9 mg/day), especially during growth 

spurts. Those portions of the population with insufficient access to foods rich in absorbable iron 

during periods of high iron demand have the largest risk of iron deficiency. Children, 

adolescents, and women of reproductive age, particularly during pregnancy, fall into these 

categories (FAO/WHO, 2004; Tako, 2022). However, excess iron can result in cell damage, 

organ failure and increasing carcinogenic risk (Eid, Arab, & Greenwood, 2017; Puliyel, 

Mainous, Berdoukas, & Coates, 2015). Iron poisoning is also a leading cause of unintentional 

death in children under the age of six years. Because there is no mechanism for excreting iron, 

toxicity is determined by the amount of iron already present in the body (Vilke et al., 2011). 

1.2.1.6. Chromium 

Chromium (Cr) is a highly hazardous heavy metal that occurs naturally and is widely 

applied in industrial processes. It can be released mainly from natural sources, principally in the 

earth’s crust (Yang & Ma, 2021). Ultramafic rocks have an average chromium concentration of 

2400 mg/kg, whereas basaltic and granite rocks have 200 mg/kg and 10 mg/kg, respectively 

(JORA, 1998). Industrial wastes from leather and tanning, petroleum and mineral refining, 

electroplating, and pulp industries are all anthropogenic sources of chromium in the environment 

in liquid and solid forms(Jarapala SR, 2014; JORA, 1998; Purakayastha & Chhonkar, 2010). 

Also, Cr could be released into the environment from chemical, mineral, steel, metal plating, 

textile dyeing, cement production, metallurgical, and other industries (Mamyrbaev, Dzharkenov, 

Imangazina, & Satybaldieva, 2015; Yang & Ma, 2021). 

The toxicity of Cr to human health has been demonstrated in several investigations 

(Blades, Ayton, Hung, Bush, & La Fontaine, 2021; Sun, Brocato, & Costa, 2015). (Blades et al., 

2021). Cr compounds can cause mutagenicity in human cells by interfering with the natural cell 

cycle (Mamyrbaev et al., 2015). Moreover, this hazardous substance in high quantities 

contributes to genotoxic and carcinogenic effects in human organs (Wang et al., 2017). 
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1.2.1.7. Copper 

Cu is a major member of heavy metals. It is the third most abundant necessary trace 

element in organisms after zinc and iron (D. A. da Silva et al., 2022). Copper is the world’s third 

most used metal and the 25th most plentiful component of the Earth’s crust (Shabbir et al., 

2020). It exists naturally in the soil, with a mean concentration of 30-35 mg/kg
2
 in dry soil, 

although the average Cu content in the earth’s crust is 60 mg/kg
2
 (Kupiec et al., 2019). 

Cu deficiencies in the diet can have long-term repercussions, including delayed 

cardiovascular development, bone deformity, and persistent neurologic and immunologic 

problems into childhood and beyond (Bost et al., 2016; Georgieff, 2007). Also, long-term 

marginal Cu deficiency in adults has been linked to changes in cholesterol metabolism (Blades et 

al., 2021) (Klevay et al., 1984). 

However, Cu high concentration leads to various diseases, including capillary damage, 

gastrointestinal irritation, heart diseases, brain damage (de Moraes et al., 2020), liver and kidney 

disease due to necrotic changes in some tissues (Chowdhury & Saha, 2011), various hepatic and 

neurological disorders including Wilson’s disease, Parkinson’s disease, Alzheimer’s disease, 

MENDIK syndrome, and Menkes disease (D. A. da Silva et al., 2022; Gaetke, Chow-Johnson, & 

Chow, 2014; V. Kumar et al., 2021). Excessive consumption of Cu in beverages and drinking 

water causes nausea, vomiting, and diarrhoea in people (WHO, 2017). Moreover, early-stage Cu 

poisoning causes weakness, lethargy, and anorexia, whereas later-stage Cu poisoning affects the 

gastrointestinal tract and causes renal necrosis (V. Kumar et al., 2021). Also, excess Cu could 

lead to mitochondrial damage, DNA breakage and brain injury (Desai & Kaler, 2008). 

Copper contamination can also be of human activity origin. Refining, metallurgy, 

fertilizer, printed circuit board production, pesticides, chemical production, paints, mine 

drainage, agricultural wastes, stormwater runoff and traffic emissions are all anthropogenic 

sources of Cu (Ameh & Sayes, 2019; Leygraf, Chang, Herting, & Odnevall Wallinder, 2019; 

Shabbir et al., 2020), while, weathering of rocks and soils, volcanoes, forest fires and many 

disturbances in soil are the main natural sources of Cu in the environment. Cu levels in soil 

properties and sediments have increased due to rapid industrialization and urbanization (V. 

Kumar et al., 2021). Cu is widely utilized as a construction material and is a component of 

numerous alloys such as sterling silver, cupronickel, and constantan, which are used in jewellery, 
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coinage, and instrument gauge. Due to its unique electricity conducting qualities, it has a wide 

range of applications, making it difficult to replace. Due to the likely rise of copper-intensive 

low-carbon energy and the electrification of transportation systems, it may become more 

significant for the general public (Schipper et al., 2018). 
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Table 3: Minerals: reliable food sources, stability, associated body systems, functions, deficiency, and toxicity symptoms 

Minerals and adult 

requirements 

Reliable food 

sources 

Associated body systems, 

functions, deficiency/toxicity 

symptoms 

Deficiency probability 

Iron 

RDA: 

M: 8 mg/day 

F (19–50 years): 

18 mg/day; (>50 

years): 

8 mg/day 

UL: 45 mg/day 

Red meat, fish, 

poultry, shellfish, 

eggs, legumes, dried 

fruits, molasses, 

whole, enriched, or 

fortified grains 

Systems: circulatory, endocrine, immune, 

muscular, nervous 

Functions: part of haemoglobin and myoglobin; 

electron 

carriers in electron transport chain; immune 

function 

Deficiency: iron deficiency anaemia − small, pale 

red blood cells, low haemoglobin, weakness, 

pallor, headaches, reduced immunity, inability to 

concentrate, cold intolerance 

Toxicity: gastrointestinal upset (GI upset), iron 

overload, infections, liver 

damage, acidosis, shock 

Common in at-risk groups. 

Deficiency may be associated 

with unusual blood loss, 

parasites, or malabsorption 

At risk: infants and preschool 

children; adolescents; women 

of childbearing age; pregnant 

women; athletes; vegetarians 

Zinc 

RDA: 

M: 11 mg/day 

F: 8 mg/day 

UL: 40 mg/day 

Meat, seafood, 

poultry, whole 

grains, legumes, 

wheat bread, eggs 

Systems: immune, integumentary, muscular, 

nervous, reproductive 

Functions: regulates protein synthesis; functions in 

growth, development, wound healing, immunity, 

antioxidant protection, vitamin A transport, 

fetal development 

Deficiency: poor growth and development, skin 

rashes, 

decreased immune function, loss of taste, poor 

wound 

healing 

Toxicity: decreased copper absorption, depressed 

immune 

function, kidney failure 

The extent of inadequacy is 

unknown. 

Conditional deficiency can 

occur with systemic childhood 

illness and individuals who are 

nutritionally depleted or have 

experienced 

severe stress such as surgery 

At risk: vegetarians; low-

income children; elderly 

Copper 

RDA: 900 μg/day 

Organ meat, 

seafood, nuts, seeds, 

Systems: immune, muscular, nervous 

Functions: part of proteins needed for iron 

No evidence 

At risk: those who over-
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UL: 10 mg/day whole grains, cocoa absorption, 

lipid metabolism, collagen synthesis, nerve and 

immune 

function, and antioxidant protection 

Deficiency: anaemia, poor growth, bone 

abnormalities 

Toxicity: vomiting, diarrhoea 

supplement with zinc; Menkes 

the disease is a genetic disorder 

resulting in copper deficiency 

Chromium 

AI: M (19–50 years): 

35 μg/day 

F (19–50 years): 25 

μg/ 

day 

UL: no UL 

Brewer’s yeast, 

meat, nuts, whole 

grains, mushrooms 

Systems: endocrine 

Functions: associated with glucose metabolism; 

enhances insulin action 

Deficiency: abnormal glucose metabolism; high 

blood 

glucose 

Toxicity: can occur with occupational exposure; 

causes 

damage to skin and kidneys 

Found in those with severe 

malnutrition and may be a 

factor in diabetes development 

in older adults  

At risk: malnourished children 

a 
Requirements are based on the Institute of Medicine Dietary Reference Intakes: Recommended Dietary Allowance (RDA), Adequate 

Intakes (AI), and Tolerable Upper Intake Level (UL) (Medicine, Food, Board, & Staff, 1998; Tako, 2022). F: female and M: male 
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1.2.2. Pesticide residues 

Pesticides are compounds or mixtures of substances used to prevent, remove, or control 

pests such as insects, fungi, rodents, or undesired plant species that cause harm to crops during 

production and storage (Xin Li et al., 2019). The word “pesticide” is a broad term that includes 

insecticides, herbicides, fungicides, and rodenticides which can be used to eliminate specific 

pests. Pesticides are classified as chemical or bio-pesticides based on their sources of origin 

(Chen, Quandt, Grzywacz, & Arcury, 2011). 

Chemical pesticides have performed an important and potentially beneficial role in 

increasing agricultural productivity by reducing pests and plant diseases (Chawla, Kaushik, 

Shiva Swaraj, & Kumar, 2018; Malarkodi, Rajeshkumar, & Annadurai, 2017; Moreno-González 

et al., 2017). Also, throughout the world, approximately 9000 kinds of insects and mites are the 

primary reason for the lack of desired agricultural produce products for human consumption; 

hence, controlling damaging insects is a critical responsibility for improving agriculture supply 

production (Fan, Zhao, Yu, Pan, & Li, 2014; X. Liu, Mitrevski, Li, Li, & Marriott, 2013). 

However, despite their beneficial effects, their use has been linked to several negative 

consequences, including unfavourable effects on non-target species and severe environmental 

and human health consequences such as contaminated soil and water, the food chain’s 

bioaccumulation and biomagnification and their potential link to effects on human health 

(Simeonov, Macaev, & Simeonova, 2014). Pesticides can be categorized in a variety of ways. 

According to Drum (1980), they could be classified depending on their source (Table 4), their 

function (Table 5), or the target pest species (Table 6). 

Table 4: Classification of pesticides based on origin (Chen et al., 2011) 

Origin Sources and examples 

Organic sources 

Natural-plant phytochemical (essential oil, plant extracts, leftover 

oilseed cakes) synthetic-produced by chemical synthesis 

Pyrethroids, organophosphates, carbamates, organochlorine 

Inorganic 

sources 

Inorganic-mixture of inorganic salts Bordeaux mixture Cu (OH)2. 

CaSO4 

Malachite Cu (HO)2. CuCO3 and sulphur 

Biological Biological: microbial pesticide (bacteria, virus, and fungi) 
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Table 5: Classification of pesticides based on function (Chen et al., 2011). 

Action Functions Examples 

Feeding deterrents Prevent an insect or other pest from feeding 
Azadirachta 

Indica A. Juss 

Ovipositor deterrent Prevent egg laying by gravid female 
Azadirachta 

indica 

Repellents 
Deters pests from approaching toward 

Crops 

Plant essential 

oil 

Attractants A chemical that lures pests Gossyplure 

Fumigants Kills the target pests by producing vapour Phosphine 

Insect growth 

regulator 

A substance that works by disrupting the growth 

or development of an insect 
Diflubenzuron 

Synergist 
A chemical that enhances the toxicity of a 

pesticide but is not by itself toxic to the pest 

Piperonyl 

butoxide 

 

Table 6: Classifications of Pesticides Based on Target Pest Species (Chen et al., 2011) 

Pesticides class Target pests Examples 

Acaricides  Mites  Bifonazole 

Algaecides  Algae  Copper Sulfate 

Avicides  Birds  Avitrol 

Bactericides  Bacteria  Copper Complexes 

Fungicides  Fungi  Azoxystrobin 

Herbicides  Weeds  Atrazine 

Insecticides  Insects  Aldicarb 

Larvicides  Larvae  Methoprene 

Molluscicides  Snail  Metaldehyde 

Nematicides  Nematodes  Aldicarb 

Ovicides  Egg- prevents hatching of eggs in insects and mites Benzoxazine 

Piscicides  Fishes  Rotenone 

Repellents  Insects  Methiocarb 

Rodenticides  Rodents  Warfarin 

Termiticides  Kills termites  Fipronil 

Viricides  Viruses  Scytovirin 

 

In this thesis, we are interested in pesticide residues classified depending on synthetically 

produced by chemical synthesis, which are pyrethroids (PY), organophosphates (OP), 

carbamates (CB), and organochlorine (OC). After the Second World War, the use of commercial 

synthetic pesticides to control insects as disease vectors and pests in agriculture increased 

dramatically on a global scale. These “pioneer” compounds have demonstrated environmental 

stability and long-term efficacy. However, they accumulate in the biosphere due to their 
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lipophilicity and resilience to biodegradation, and detectable levels can be observed in numerous 

foods, including milk and dairy products worldwide (Fischer, Schilter, Tritscher, & Stadler, 

2016). 

Regarding residual pesticides, bio-concentration is a well-known process for a food 

chain, and humans are always at the top of the food chain. As a result, there is a high likelihood 

of more concentrated pesticide residues accumulating in the human body, as illustrated in Figure 

2. 

 

 

 

Figure 2: Bio-concentration of residual pesticides in the food chain (Chawla et al., 2018) 

A rising number of pesticides are entering our environment, posing a risk to human and 

animal health and the ecosystem (Bedi, Gill, Aulakh, & Kaur, 2015; Gill & Garg, 2014). Long-

term pesticide exposure can cause liver and kidney damage (Peres, Moreira, Rodrigues, & 

Claudio, 2006), endocrine system disruption, nervous and immune systems diseases and breast, 

lung, cervix, and prostate cancer risk (Bedi et al., 2015) (Figure 3). 
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Figure 3: Effects of residual pesticides on the human body (Chawla et al., 2018) 

 

Pesticides have been found in water bodies, soil, air, and biota due to their widespread 

use to increase agricultural productivity (JORA, 1998). As knowledge of the detrimental effects 

of many pesticides increased, many governments implemented pesticide restrictions to safeguard 

human and environmental health (Purakayastha & Chhonkar, 2010). The use of 

dichlorodiphenyltrichloroethane (DDT), for example, was forbidden globally in the Stockholm 

Convention of 2001 due to its negative impact on the environment and the health of living beings 

(Jarapala SR, 2014). More international conventions, such as the Rotterdam Convention of 2006 

and the Montreal Protocol from 1993, have been adopted to limit the use of very toxic pesticides 

(Yang & Ma, 2021). There are two different definitions of residues under the law. The first is to 

assess the potential harm to human health and the environment. 

On the other hand, the second is utilized for pesticide application monitoring and is 

highly dependent on the matrix. The term’s use in European legislation is based on research into 
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plant and animal metabolism and degradation while considering toxicology, ecotoxicology, 

agronomy, and exposure. The term “residue” can refer to both the pesticide’s active ingredient 

and its transformation products (JORA, 1998).  

European Commission (2005) establishes the MRL as the upper legal limit for a residual 

of an active pesticide ingredient in/on food or feed in Europe. They are calculated according to 

acceptable agricultural practices, minimizing consumer interaction with the pesticide to protect 

the most vulnerable. Good Agricultural Practices (GAP) standards and MRLs have been 

established by international regulatory organizations such as the EU and FAO/WHO to protect 

human and environmental health (Mamyrbaev et al., 2015). Pesticide MRLs for European Union 

countries are set down in European Commission (2005) and are continually monitored in the 

environment. MRLs are typically set at the lowest quantities detectable by standard analytical 

procedures, allowing the active ingredient to be detected at even lower concentrations. They 

generally range from 0.01 to 10 mg/kg, while items of plant or animal origin are restricted to not 

exceeding 0.01 mg/kg if no MRL has been established (Article 18, 1b). Pesticides are frequently 

banned as a protective measure if there is proof that they represent a health danger to organisms. 

Once adequate scientific information becomes available, the ban can be revaluated. After 

reviewing the literature available at the time, the European Food Safety Authority (EFSA) 

revaluated the 2006 endosulfan ban in 2011. They agreed that the pesticide should stay illegal in 

the European Union and be regulated as a substance that should not be used in animal feed. 

Furthermore, the European Food Safety Authority (EFSA) noted that more research was 

needed to better understand pesticides’ toxicity in diverse species (Sun et al., 2015). The 

situation is different in developing nations, where governments argue that they cannot readily 

ban specific chemicals due to several factors, including controllability, affordability, and 

efficacy. As a result, many developing nations have utilized or still use these substances in huge 

quantities (Boudebbouz, Boudalia, et al., 2022a; Ecobichon, 2001). Additionally, while 

developed countries utilize more than 80% of the pesticides produced globally, developing 

countries only use 20% of them. However, the fatality rate from improper or indiscriminate 

pesticide use is 13 times higher in developing nations (Ansari et al., 2021), there are no 

regulations for pesticide application, and farmers lack the necessary knowledge and training 

(Udimal et al., 2022). 
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Even though MRL is a good tool to evaluate the potential exposure assessment of 

pesticide residues, residue levels at or below the MRL would not give intakes that exceed the 

ADI/ARfD, but, despite this, there is public concern over such residues (Sun et al., 2015). The 

toxicological reference values used in dietary risk assessment are the Acceptable Daily Intake 

(ADI) and the Acute Reference Dose (ARfD). 

Based on all available facts at the time of the evaluation, the Acceptable Daily Intake 

(ADI) is an estimate of the number of pesticides in food or drinking water that can be taken daily 

throughout a lifetime without posing a significant health risk to the consumer. However, the 

Acute Reference Dose (ARfD) estimates the number of pesticides in food or drinking water that 

can be taken over 24 hours without posing a significant health risk to the consumer. Both 

(ADI/ARfD) are measured in pesticide milligrams per kilogram of body weight. The pesticide’s 

dietary intake is calculated using a combination of national or regional food consumption 

statistics and predicted residues in food and/or drinking water. When the estimated long-term and 

short-term dietary consumption of pesticide residues do not exceed the recommended daily 

intake (ADI) and acute reference dose (ARfD), the consumer is considered effectively protected 

(Mamyrbaev et al., 2015). 

Over the last decades, several pesticide residues have been detected worldwide in milk 

and dairy products. Table 7 shows all pesticide residues detected with their MRL in the milk and 

dairy products and the ADI/PTDI for each pesticide. The MRL and ADI/PTDI could be obtained 

from the pesticide database set by the Codex Alimantarius Commission (2020) for all pesticide 

residues in foods other than milk and dairy products. 
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Table 7: Maximum residues limit (MRL), Provisional Tolerable Daily Intake (PTDI)/ of 

Pesticide residues in milk, Data extracted from Codex Alimantarius Commission (2020) 

Pesticide residues Class 
MRL (Year of 

Adoption) (mg/kg) 

ADI/PTDI (Year of 

Adoption) (mg/kg 

BW) 

o.p’-DDE Organochlorine  - - 

o.p’-DDE Organochlorine  - - 

o.p’-DDE Organochlorine  - - 

o.p’-DDE Organochlorine  - - 

Sum of DDT Organochlorine 0.02 (1997) 0.01 (2000) 

Alpha endosulfan Organochlorine  - - 

Beta endosulfan Organochlorine  - - 

Endosulfan sulphate Organochlorine  - - 

Sum of alpha 

endosulfan, beta 

endosulfan and 

endosulfan sulphate 

Organochlorine 0.01 (2007) 0.006 (1998) 

α HCH Organochlorine  - - 

α HCH Organochlorine  - - 

α HCH Organochlorine  - - 

α HCH Organochlorine    

ΣHCH Organochlorine 0.001 (2016) 0–0.005 (2002) 

Aldrin Organochlorine  - - 

Dieldrin Organochlorine  - - 

Aldrin and Dieldrin Organochlorine 0.006 (-) 0.0001 (1994) 

Drins Organochlorine  - - 

Endrin Organochlorine  - 0.0002 (1994) 

Heptachlor Organochlorine  - - 

Heptachlor epoxide Organochlorine  - - 

Sum of heptachlor 

and heptachlor 

epoxid 

Organochlorine 0.006 0.0001 (1994) 

Malathion Organophosphorus - 0-0.3 (1997) 

Dimethoate Organophosphorus 0.05 (2003) 0.002 (1996) 

Chlorpyriphos Organophosphorus 0.02 (2003) 0-0.01 (1999) 

Profenofos Organophosphorus 0.01 (2009) 0-0.03 (2007) 

Dichlorvos Organophosphorus 0.01 (2013) 0-0.004 (2011) 

Methamedophos Organophosphorus 0.02 (2005) 0-0.004 (2002) 

Ethion Organophosphorus - 0.002 (1990) 

Parathion methyl Organophosphorus - 0.003 (1995) 

Cypermethrin Pyrethroid 0.05 (2009) 0-0.02 (2006) 

Permethrin Pyrethroid - 0.05 (1999) 

Bifenthrin Pyrethroid 0.2 (2011) 0-0.01 (2009) 

Cyhalothrin Pyrethroid 0.2 (2009) 0-0.02 (2007) 

Deltamethrin Pyrethroid 0.05 (2004) 0-0.01 (2000) 

Carbaryl carbamate 0.05 (2004) 0-0.008 (2001) 

Aldicarb carbamate 0.01 (-) 0.003 (1992) 

Carbofuran carbamate - 0-0.001 (2008) 
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1.2.2.1. Organochlorine pesticides 

Organochlorine pesticides (also called chlorinated hydrocarbons) are organic molecules 

linked to five or more chlorine atoms. They represent one of the oldest categories of pesticides 

ever synthesized and are widely employed in agriculture (Chen et al., 2011; Xin Li et al., 2019). 

Because of their chemical stability, long biological half-life (ranging from a few years to more 

than 10 years), and high biomagnification in the food chain, organochlorine pesticides (OC) (also 

known as chlorinated hydrocarbons) are considered the most harmful and persistent substances 

in the environment (Chen et al., 2011; Serrano, Blanes, & López, 2008). OC pesticides may be 

found in higher concentrations in human tissues such as the liver, kidney, thyroid, heart, 

mammary gland and testes (Nag, 2010). 

Human researchers have revealed several negative health outcomes linked to OC 

pesticide exposure. They show that the presence of OC pesticides in human organs leads to 

endocrine-disrupting activity and can cause chronic toxicity after long-term exposure (Ansari et 

al., 2021; Martins, Amaya Chávez, Waliszewski, Colín Cruz, & García Fabila, 2013). In 

addition, Organochlorine pesticides can also cause non-Hodgkin’s lymphoma, hepatotoxicity, 

immunotoxicity, developmental abnormalities, neurobehavioral disorders and population drops 

(Qu, Suri, Bi, Sheng, & Fu, 2010). 

Sixteen (16) out of 30 chemicals targeted by the Stockholm Convention listed in the 

annexes of the convention text are Organochlorine pesticides (OC): aldrin, endrin, dieldrin, 

chlordane, chlordecone, dichlorodiphenyltrichloroethanes (DDTs), heptachlor, mirex, toxaphene, 

endosulfan and isomers, hexachlorobenzene (HCB), alpha-hexachlorocyclohexane (a-HCH), 

beta-hexachlorocyclohexane (b-HCH), lindane, Dicofol and penta-chlorobenzene (Stockholm 

Convention, 2009). 

1.2.2.2. Organophosphorus pesticides 

Organophosphorus pesticides are phosphoric acid-derived pesticides considered wide-

spectrum pesticides because of their numerous functions. They manage a wide range of pests, 

weeds, and plant diseases. They are cholinergic cholinesterase inhibitors, which disrupt 

neurotransmitter transmission across a synapse (Saha et al., 2017). Organophosphate insecticides 

quickly replaced stable OC (which were banned in many countries in developed and developing 

countries in the 1970s) chemicals, resulting in a gradual decrease in OC residues such as DDT 
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(and its metabolites) and hexachlorocyclohexane (HCH) isomers in the environment and, as a 

result, in different foods (Fischer et al., 2016). 

Organophosphorus (OP) are phosphoric, phosphonic, phosphinic, and thiophosphoric 

acid-derived pesticides. They are a widely used class of pesticides that account for around 38% 

of all pesticides used worldwide (Vijayan P & Abdulhameed, 2020). According to several 

scientific reports, OP usage is the greatest of all pesticides, putting 3 million individuals in 

danger of OP poisoning each year (Cavaliere et al., 1998; Derbalah, Chidya, Jadoon, & 

Sakugawa, 2019; Obare et al., 2010; Sharma, Nagpal, Pakade, & Katnoria, 2010; Soltaninejad & 

Shadnia, 2014). 

Even though OP residues such as malathion, chlorpyriphos, dichlorvos, profenofos, 

coumaphos, methamedophos, ethion, and dimethoate are less persistent in the environment than 

organochlorine pesticides, some authors describe the presence of OP residues in different foods 

such as vegetables, fruits and even in the milk and dairy products (Nag, 2010). In addition, OP 

and its metabolites have been found in various crops, water sources, and soils (Songa & 

Okonkwo, 2016). OP pose significant life-threatening diseases and genetic illnesses that directly 

impact billions of people’s productivity and efficiency (N. Kumar, Kumar, Mann, & Seth, 2016). 

1.2.2.3. Carbamates 

Carbamate (CB) pesticides, including carbaryl, carbofuran, and aminocarb, are organic 

ester compounds derived from dimethyl N-methyl carbamic acid. They are similar in structure 

and purpose to OP pesticides (Hassaan & El Nemr, 2020; Xin Li et al., 2019). Carbamate 

pesticides are used as herbicides, insecticides, nematicides and fungicides for household, home, 

and agriculture purposes (Blodgett & Means, 2013). The acute poisoning symptoms arising from 

CB pesticides are similar to those of organophosphorus pesticides and are often severe. These 

poisoning symptoms can be found in several organs, including bronchial tree, cardiovascular 

effects, eye (Miosis and blurred vision), gastrointestinal manifestations and central nervous 

system effects (Roberts & Routt, 2013). In addition, numerous studies have shown that 

carbamate compounds have been linked with undesirable human health, such as cancer, 

reproduction toxicity (L. C. C. da Silva, Beloti, Tamanini, & Netto, 2014), and neurotoxic effects 

on the young human at excess intake (Herbert et al., 2021). 
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1.2.2.4. Pyrethroid pesticides 

Pyrethroids are natural and synthetic insecticides derived from the pyrethrum extracts of 

chrysanthemum flowers known as pyrethrin found in Kenya (Xin Li et al., 2019). It can act on 

the central nervous system, which causes fluctuations in the dynamics of sodium cation channels 

in the nerve cell membrane, which leads to an increase in the time of opening of the sodium 

channels. The sodium cation stream extends across the membrane in vertebrates and insects 

(Kamita, Kang, Hammock, & Inceoglu, 2005; Perry, Yamamoto, Ishaaya, & Perry, 2013). 

Due to the severe need for large quantities of these pesticides and the growing shortage of 

essential oils necessary for manufacturing natural organic pyrethrums, scientists have turned to 

the production of synthetic pyrethroids (Hassaan & El Nemr, 2020). Pyrethroid insecticides are 

mainly characterized by low toxicity to birds and mammals, high toxicity to arthropods since 

small amounts are needed to destroy insects, and high toxicity to fish when applied in water. 

They are ineffective at entering the soil to kill subsurface pests because they securely stick to soil 

and organic matter (Gupta & Crissman, 2013; Hassaan & El Nemr, 2020). They have been used 

since the 1980s worldwide due to their photodegradation, effectiveness against various insects, 

and low toxicity compared to other pesticides such as OC, OP, and CB (Yoo, Lim, Kim, Lee, & 

Hong, 2016). However, despite their low toxicity and strong efficacy against target organisms, 

pyrethroid insecticides can provoke major health problems by affecting organisms’ neurological, 

circulatory, immunological, and genetic systems (Tang et al., 2018). 
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2. Objectives and outlines 

Owing to the rising demand for milk and dairy products across the globe and in Algeria, as 

well as increased national milk production and the existence of different pathogens in raw cow 

milk and polluting sources that could cause direct or indirect contamination of raw cow milk, it 

is necessary to assess raw cow`s milk qualities (physicochemical, bacteriological and 

toxicological characteristics) produced in rural areas, particularly for emerging contaminants 

such as heavy metals and pesticides, which can be dangerous to human health. 

Many researchers have already studied raw cow milk’s physicochemical and 

bacteriological qualities in Algeria, but little information is available for milk from local cattle 

breeds in Northeast Algeria. Therefore, the innovative aspect of this thesis offers the first report 

on raw cow`s milk contamination by heavy metals and is considered an important guideline to 

the different stockholders (breeders, health authorities, and policymakers) for knowing the status 

of raw cow milk consumed by the population under climate change uncertainty context 

At the international level, and despite the difficulty in understanding the multifaceted 

aspect of food security concerning cow’s milk consumption, the potential risk to human health 

from raw cow milk consumption should be evaluated. This thesis aims to: 

1. Assess the spatial variability of seven heavy metals contents in raw cow’s milk produced in 

Northeast Algeria; 

2. Summarize livestock production practices and milk quality and discuss the potential of local 

cattle breeds to maintain production ability under climate change context; 

3. Assessing the potential risk to human health using a theoretical approach such as the hazard 

quotient (HQ) and the hazard index (HI) in Northeast Algeria; 

4. Compare the levels of heavy metals (copper (Cu), iron (Fe) and nickel (Ni), aluminium (Al), 

cadmium (Cd), lead (Pb), and mercury (Hg)) and synthetic pesticide residues (organochlorine 

(OC), organophosphorus (OP), carbamate (CB), and pyrethroid (PY)) in raw cow’s milk samples 

recorded in different countries, and discussing contamination sources and regulations; 
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5. Estimate daily intake (EDI), hazard quotient (HQ), and hazard index (HI) of pesticide residues 

and heavy metals from consuming raw cow’s milk using data extracted for pesticide residues and 

heavy metals levels recorded from different areas across the globe. 
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Abstract 28 

Algerian indigenous cattle breeds are well adapted to the local harsh arid and semi-arid 29 

environment. They are essential to enhance sustainable farming systems, which promote 30 

biodiversity and keep a balanced ecosystem. This study aimed to summarize livestock 31 

production practices, milk quality and to discuss the potential of local cattle breeds to 32 

maintain production ability under global warming. To collect data related to livestock farming 33 

practices, 175 smallholder farmers who practice the breeding of the Algerian local cattle 34 

breed were interviewed using a formal questionnaire. Then, 122 milk samples were collected 35 

to carry out the physicochemical and bacteriological analysis. Climate data variability from 36 

the study area was evaluated. 37 

Results reveal that breeders have a low educational level (39.4% unlettered). They own small 38 

breeding essentially consisting of local cattle breeds (6.84 ± 8.66 cattle). The results also 39 

show that the average daily milk production was 4.13 ± 2.12 L/cow/day, with an acceptable 40 

physicochemical quality but poor bacteriological quality. Considering the vulnerability of the 41 

study area, we can consider that the exploitation of local breeds seems to be the best 42 

adaptation strategy to climate change effects. On the one hand, conservation programs of local 43 

breeds can promote biodiversity and keep a balanced ecosystem. On the other hand, it may 44 

benefit from a genetic improvement program that can increase productivity and profitability. 45 

This can be beneficial for smallholders; and can provide them with a fair and stable income 46 

and good working conditions and could contribute significantly to the social equity and local 47 

economies. 48 

Keywords: sustainable livestock, global warming, local bovine breed, milk quality, milk 49 

yield. 50 
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1. Introduction 51 

The most prominent cause for climate change is the increased greenhouse gas emissions 52 

(GHGs) in the atmosphere, such as nitrous oxide (N2O), carbon dioxide (CO2), and methane 53 

(CH4), causing irregularity, variability, and unpredictability of rainfall, floods, and drought 54 

periods (IPCC, 2021). More than 83% of the total agricultural emissions are due to livestock 55 

emission sources. Enteric fermentation is considered the biggest contributor (about 5.5 56 

MtCO2e) of livestock emissions, followed by manure left in pasture (4.5 MtCO2e) (Climate 57 

Watch, 2021). 58 

Among the polluting sectors in Algeria, agriculture contributed 12.3 Million tons CO2 59 

equivalent (MtCO2e) GHG emissions in 2012, which represented 5.63% of its total emissions 60 

excluding land-use change and forestry (219 MtCO2e) (Climate Watch, 2021; FAO, 1997). 61 

According to Prevention Web, Algeria is ranked 18 of 184 of the most exposed countries to 62 

drought, and about 10% of its population (3,763,800 inhabitants) is exposed to droughts 63 

(WBG, 2022).  64 

Several studies predict a further future decrease in total annual rainfall by 15-30% 65 

(Christensen et al., 2007) and desert climate expansion at the expense of the temperate 66 

northern zone, which is explained both by increasing temperature and decreasing precipitation 67 

(Zeroual et al., 2020; Zeroual et al., 2019). Moreover, these effects will likely be "severe, 68 

pervasive and irreversible" in the years to come (IPCC, 2021; Zeroual et al., 2016; Mariotti et 69 

al., 2015; IPCC, 2014; Sahnoune et al., 2013), which can negatively affect livestock 70 

production, crop yields, and threaten food and nutrition security (FAO, 2013). 71 

In order to deal with these effects, it is urgently needed to transform the agriculture, livestock 72 

farming and food systems towards more sustainable production methods. The reduction of 73 

carbon footprint and greenhouse gas fluxes as well as the genetic conservation and 74 

preservation of local breeds which are well adapted to the local environment, are both 75 
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strategies that can be profitable and safeguard natural resources for the future generations 76 

(Khelifa et al., 2021; Brini, 2021; Bousbia et al., 2021; Martin et al., 2020; Wainwright et al., 77 

2019; IPCC, 2014). 78 

The Algerian Brown Atlas breed is well adapted to the local harsh arid and semi-arid 79 

environment and is characterized by tolerance to heat stress and diseases resistance (Boushaba 80 

et al., 2019; Djaout et al., 2017; Derradji et al., 2017). Its population has been estimated by 81 

the “Recensement National des Exploitations Agricoles et d’élevage RGA” (MADR, 2001) at 82 

nearly 896,287 subjects. Nevertheless, the breed has low milk production, which accounts for 83 

1175 litter/cow/year (Mamine et al., 2011). To remedy this low yield, foreign breeds were 84 

imported (Holstein and Montbéliarde breeds), which has led to a profound change in the 85 

genetic structure of the dairy herd in Algeria, resulting in a drastic fall on the numbers of local 86 

cattle. Thus, the share of local breeds has been reduced from 82% of the total in 1986 to about 87 

48% of the total in 2016 (Wilson, 2018). 88 

The performance of imported breeds is lower under hot environments than in their native 89 

environments (Nigm et al., 2015; Madani and Mouffok, 2008). It is well established in the 90 

literature that when dairy cattle are under heat stress there is an increase in water intake and a 91 

decrease in dry matter, protein and fat content of milk as well as milk yield (Gorniak et al., 92 

2014). The microbiological qualities of milk are also affected, because contamination and 93 

pathogen proliferation increases under excessive heat and humidity (Montcho et al., 2021), 94 

resulting thus in economic loss from dairy farms (Bohmanova et al., 2007; Martín-Sosa et al., 95 

2003). On the other hand, local breeds can perform well in adverse climatic conditions like 96 

high temperature, drought, feed and water scarcity (Sejian et al., 2015) because they are more 97 

robust and genetically better adapted to their environment (Rodríguez-Bermúdez et al., 2019).  98 

Since the local bovine breeds farming sector is not well studied in Algeria, the objectives of 99 

this study were a) to summarize the farming practices of local bovine farms in the northeast of 100 
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the country, b) to evaluate the physicochemical and microbiological properties of raw milk 101 

from the local bovine breed, and c) to highlight the climate variability in the study area, and 102 

discuss the potential of the local cattle breed to contribute to climate change mitigation and 103 

increasing resilience through adaptation. 104 

2. Material and Methods 105 

2.1. Ethical statement 106 

This study was carried out as part of the BOVISOL project (Breeding and management 107 

practices of indigenous bovine breeds: Solutions towards a sustainable future 108 

www.rias.gr/bovisol). The BOVISOL project (2018-2022) is a cooperation of scientific teams 109 

from Greece, Tunisia, and Algeria and has been formed around the hypothesis that the local 110 

bovine breeds must be preserved since they possess a valuable genetic pool and they are a part 111 

of the landscape and the biodiversity of rural areas (Boudalia et al., 2020). The local Data 112 

Protection Board (DPB) and the local ethics committee have approved experimental 113 

protocols. The study involved data collection from different farms so the farmers were 114 

informed of the purpose of the project and have given their consent for their participation 115 

(complete the survey questionnaire, and/or provide a sample of the milk), and the use of data 116 

collected and generated for scientific publications. 117 

2.2. Study area and environmental characterization 118 

The present study was conducted in the northern-east of Algeria (Figure 1) from June 2018 to 119 

August 2021. The region is characterized by a subhumid climate in the center and in the 120 

North and semi-arid in the South. The climate is mild and rainy in winter, and hot and dry in 121 

summer (Figure 2A, B). To determine the historical (1980-2018) and projected future (2081-122 

2100) climatic changes, the annual average temperature and annual precipitation from 123 

Worldclim2 was used (Fick and Hijmans, 2017). Moreover, land use data of Venter et al. 124 

(2016) and particularly cropland and pasture data were used to determine the temporal change 125 

http://www.rias.gr/bovisol
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of the area of these two land use types (cropland data are provided for 1992 and 2005 whereas 126 

pasture data are provided for 1993 and 2009). Croplands are coded as 0 (absence) or 7 127 

(presence). Pastures are scored in four categories (None [0%] = 0, sparse [<12.5%] = 1, 128 

medium [>12.5%] = 2, dense [>50%] = 3). The pastures were categorized into presence and 129 

absence to estimate the historical change in percent cover in the study area. 130 

2.3. Interviews and data collection 131 

The study was conducted from June 2018 to August 2021. Detailed information was collected 132 

via a formal questionnaire developed in the BOVISOL project and used in Greece, Tunisia 133 

and Algeria (Boudalia et al., 2020). It included open-ended and closed questions and covered 134 

the following topics: demographic information on the farmers, gender dimension, and details 135 

on the farms, breeds, the animals’ performance, production systems and market channels. 175 136 

face-to-face interviews with farmers practicing the breeding of local bovine breed were 137 

conducted, 2 to 3 visits to each farm, in the local dialect, where the content of the 138 

questionnaire was read and interpreted to all the interviewed farmers. The data were coded, 139 

entered in a database, corrected and validated by the research group. In this research article, 140 

we present only preliminary results concerning farms and farmers’ data in Algeria. 141 

2.4. Samples collection 142 

122 out of the 175 participating farmers agreed to provide milk samples for analysis. A total 143 

volume of about 0.5-1 L of milk was collected from each farm in sterile glass bottles and 144 

placed immediately in a cooler, then transported to the laboratory for analysis. All bottles 145 

were previously autoclaved at a temperature of 121 °C, under a pressure of 1 bar for 15 146 

minutes. The vials were filled from a container of mixing milk, respecting the Good 147 

Laboratory Practices (GLP), and the rules of asepsis (disinfection of the hands). In order to 148 

take account of the real field conditions, no conservative was added. 149 

 150 
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 151 

Figure 1. Study area. Map showing the locations of the municipalities investigated. Map created using the Free and Open Source QGIS. 152 
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2.5. Physicochemical properties 153 

For physicochemical analysis, pH was measured using a pH meter Adwa, AD1000 and 154 

acidity (°D) was determined according to the method detailed in Tadjine et al. (2019). 155 

Freezing point (°C), conductivity (μS/cm), fat content (g/kg), protein content (g/kg), lactose 156 

content (g/kg), mineral content and vitamins (g/kg) of milk were measured with a Lactoscan 157 

milk analyzer (Milkotronic Ltd, Nova Zagora, Bulgaria) according to the manufacturer's 158 

instructions. 159 

2.6. Microbiological analysis 160 

For bacteriological analysis, samples preparation and dilutions were performed according to 161 

the recommendations of the International Dairy Federation (IDF, 1991): 1). The Total 162 

Mesophilic Aerobic Flora (TMAF) was enumerated using Plate Count Agar (PCA) and 163 

incubated at 30 °C for 72 h. 2). The Total Coliforms and Fecal Coliforms were determined 164 

using Violet Red Lactose Bile agar (VRBL) incubated at 37 °C for total coliforms, and 44 °C 165 

for fecal coliforms. 3). Sulphite Reducing Clostridium was determined using enrichment 166 

method in a liquid medium. 4). The enumeration of Staphylococci suspected pathogens was 167 

conducted using a selective medium (Chapman) and incubated at 37 °C for 24 to 48 hours. A 168 

positive culture of Staphylococci is indicated by the formation of a black precipitate 169 

surrounded by a white halo. 5). For Salmonella, two mediums were used to enumerate the 170 

colonies: Selenite-Cystine for enrichment at 37 °C for 12 h, and SS medium (Salmonella-171 

Shigella) for isolation at 37 °C for 24 h. Salmonella appears like colorless and transparent 172 

colonies with or without a black center of small size (2 to 4 mm in diameter). 173 

2.7. Data analysis 174 

The results of the physicochemical analysis were expressed in the form of means ± SD 175 

(Standard Deviation). All the colonies were counted as Colony Forming Units per ml of milk 176 

(CFU/mL) (IDF, 1991). Average slopes of the historical change of temperature and 177 
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precipitation across farms were carried out using linear regressions. The data was processed 178 

using IBM SPSS Statistics package version 25 (IBM SPSS, 2017). The minimum threshold of 179 

significance retained is p <0.05. 180 

 181 

3. Results and Discussion 182 

3.1. Climate variability 183 

Across the selected farms, annual average temperature increased by 0.3 ± 0.001 °C yr-1 184 

between 1980 and 2018 (Figure 2C). Between 1980-2000 and 2081-2100, future scenarios of 185 

climate show that annual average temperature will increase in the region by 1.18°C for SSP1-186 

2.6, 2.33°C for SSP2-4.5 and 4.59°C for SSP5-8.5. Annual precipitation declined by -0.99 ± 187 

0.24 mm yr-1 between 1980 and 2018 (Figure 2D), and is projected to decline by 22.5 mm for 188 

SSP1-2.6, 44.4 mm for SSP2-4.5, and 95.2 mm for SSP5-8.5 between 1980-2000 and 2081-189 

2100. These data are in accordance with those of Zeroual et al. (2020); (2019) who have 190 

shown that predicted increased temperatures may further exacerbate droughts and water 191 

shortages, which will lead to an expansion of desert climate zone at the expense of the 192 

temperate and steppe climate zones by the end of twenty-first century (2045-2100). 193 

The decrease in precipitation and the increase in air temperature were accompanied by an 194 

increase in cropland and a decline in pasture areas. The cropland cover in our study area 195 

increased by 90.3% from 1992 to 2005 (Figure 2E, F). The pasture area declined by 53.7% 196 

from 1993 to 2009 (Figure 2G, H). This rapid change in land use has impacted the distribution 197 

of high-quality foraging lands for livestock, including natural vegetation. 198 

 199 
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200 
Figure 2. Study area. Environmental characteristics of study area. The plot shows annual average temperature (A), annual precipitation (B), 201 

change in annual average temperature during 1980-2018 (C), change in annual precipitation (D), cropland cover in 1992 (E), cropland cover in 202 

2005 (F), pasture cover in 1992 (G), and pasture cover in 2009 (H). Cropland is coded as 0 (absent) or 7 (present). Pastures are scored in four 203 

categories (None [0%] = 0, sparse [<12.5%] = 1, medium [>12.5%] = 2, dense [>50%] = 3). 204 

 205 
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3.2. Socio-Demographic Characteristics 206 

Table 1 summarizes farms data collected from June 2018 to August 2021. The average 207 

number of cattle is 14.41 ± 14.65 per farm, with 6.84 ± 8.66 representing the local cattle 208 

breed, which includes several traditional ecotypes such as the Guelmois, Sétifien, Cheurfa, 209 

and Fawn, meeting the standard of the local bovine breed (Bousbia et al., 2021). The level of 210 

education of breeders is often very low, where 39.4% of breeders are unlettered and 34.9% 211 

have a primary education level. Low literacy is a concept often observed in rural areas in 212 

Algeria, and it’s partly explained by the farms location in remote areas, without schools and 213 

cultural centers (Mouhous et al., 2020; Benidir et al., 2020). 214 

All interviewees were men, without any women among 175 respondents. This gender 215 

inequality represented by complete men dominance is in agreement with that already found 216 

by Laouadi et al. (2018) with small-holders’ goat production systems in the area of Laghouat, 217 

located in southern Algeria (only one woman among 106 respondents), and Kadi et al. (2013) 218 

in the mountainous area of Kabylie in Algeria (86.2%). Although several studies show that 219 

global warming and climate change can amplify the effects of gender inequality in rural 220 

communities (Balehey et al., 2018), this question remains poorly documented in Algeria. This 221 

could be due to the traditional and cultural structure of society (customs) where men do not let 222 

women participate in interviews. Moreover, the majority of the surveyed farmers rely on 223 

family labor in their agricultural activities (65.1%). The man is considered the head of the 224 

family; he relies on family members to accomplish the various tasks on farm, where women 225 

and children play an important role in the functioning of farms. 226 

In general, breeders with more than 20 years of experience are the most prominent, while new 227 

investors (≤ 5 years) represent only 0.57% of the total surveyed farmers. Moreover, the low 228 

percentage of breeders below 30 years old (1.7%) could indicate that young people are not 229 

interested in local cattle raising, and are moving towards the practice of intensive production 230 
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system and/or other professions with better working conditions, fast and easy revenue such us 231 

fattening cattle, poultry farming and business. These results are in agreement to the reports of 232 

Laouadi et al. (2018) in Algeria and Yakubu et al. (2019) in Nigeria. 233 

The daily average milk production was 4.13 ± 2.12 L/cow/day very close to those reported for 234 

the Algerian local breed (Brown Atlas) with 1400 L/cow/year (≈ 4 L/ cow/day) by Yakhlef 235 

(1989). However, they are lower compared to those recorded in the Kabylie region with 10.52 236 

L/cow/day for crossbred cattle (indigenous × Holstein-Friesian of unknown percentage of 237 

genetic composition) (Mouhous et al., 2020), and higher than those recorded in the Central of 238 

Uganda (2.6 ± 0.19 L/cow/day) for indigenous cattle breed (Nalubwama et al., 2016). 239 

Concerning foreign imported breeds, like Holstein and Montbéliarde, which are more adapted 240 

to cold climate, milk yield recorded in semiarid and arid climates presents high variability 241 

from one farm to another with 1480 to 6703 L/cow/year (4.05 to 18.36 L/cow/day) in the 242 

mountainous region of northern Algeria (Bouzida et al., 2010), 9.15 L/cow/day in eastern 243 

region of Algeria (Yozmane et al., 2019). In Muscat city in Oman, Alqaisi et al. (2020) 244 

reported a yield equivalent to 17.08 and 11.35 L/cow/day for Holstein and Jersey breed, 245 

respectively. 246 

It should be noted that milk yields of Holstein breeds remain significantly lower than those 247 

reported in cold-climate regions, where these breeds originated. Rémond and Bonnefoy 248 

(1997) reported an average milk yield of 29 L/cow/day for multiparous Holstein in France, 249 

while a value of 28.3 L/cow/day was reported in Southwest Quebec (Canada) for the same 250 

breed (Ouellet et al., 2019), 25.07 ± 5.61 L/cow/day for Holstein breeds in Oita prefecture 251 

(Japan) (Kino et al., 2019) and 24.36 ± 0.01 L/cow/day for Holstein breeds in Ukraine during 252 

summer (Mylostyvyi et al., 2021). 253 

The reported changes in the climatic conditions negatively affect cattle milk yield which, in 254 

its turn, has adverse effects on the farm income. For the period from 1950 to 1999, yields in 255 
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the United States showed a decrease of 0.55 L/day/cow, which causes an economic loss of 256 

670 US Dollars million per year. Predictive analysis show a more important decrease of 1.35 257 

L/day for the 2050s and 1.84 L/day for the 2080s, with economic losses as a whole of 1.7 258 

billion US Dollars and 2.2 US billion per year in the 2050s and 2080s, respectively (Mauger 259 

et al., 2015). Same results were reported by other studies (Mylostyvyi et al., 2021; Gisbert-260 

Queral et al., 2021; Ouellet et al., 2019). 261 

Overall, considering the vulnerability of our study area towards the changing climate 262 

conditions, it seems obvious that the exploitation of foreign breeds such as the Holstein breed 263 

is not the best adaptation strategy to climate change effects. 264 

 265 
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Table 1. Socio-economic characteristics of cattle farmers in the study area 266 

Variable Results 

Farms 

Total surveyed farm 175 

Total animals (Number of cattle) 14.41 ± 14.65 

Ecotypes 

Number of local cattle 6.84 ± 8.66 

Number of improved-bred cattle 2.10 ± 4.60 

Number of ecotype Guelmois 2.51 ± 2.93 

Number of ecotype Cheurfa 0.60 ± 1.37 

Number of ecotype Sétifien 1.85 ± 2.88 

Number of ecotype Fawn  1.88 ± 3.69 

Crossbreed phenotype (local × local) 2.68 ± 4.78 

Crossbreed phenotype (local × exotic) 2.77 ± 3.98 

Farmers 

Gender 
Men 175 

Women 0 

Age (years) 

21-30 3 (1.7%) 

31-40 27 (15.4%) 

41-50 39 (22.3%) 

> 50 106 (60.6%) 

Education 

level (%) 

None 39.4 

Primary 34.9 

Medium 19.4 

High 6.3 

Experience 

working on 

animal 

production 

(%) 

< 5 years 0.57 

5 at 10 years 2.85 

10 at 20 years 29.75 

> 20 years 66.85 

Number of family members 4.01 ± 2.261 

Labor 

Family 

members 

working in 

farm (%) 

0 61 (34.9%) 

1 66 (37.7%) 

2 29 (16.6%) 

3 13 (7.4%) 

> 4 4 (3.4%) 

Economical aspects 

Milk production (L per Female per Day) 4.13 ± 2.12 

Production 

products (%) 

Milk 18 (10.28) 

Meat 16 (9.14) 

Mix Production products 141 (80.58) 

 267 
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3.3. Milk properties 268 

3.3.1. Physicochemical properties of raw milk 269 

Table 2 shows the physicochemical properties of raw milk collected from local bovine breeds 270 

in the northeastern Algeria. In general, lactose, protein and fat content, corresponds to the 271 

values of cow's milk standards. Matallah et al. (2017) showed similar results for raw cow milk 272 

from El Taref province with an average pH of 6.9 ± 0.37 vs. 6.5 ± 0.07, acidity of 18.7 ± 3.32 273 

vs. 18.9 ± 1.11°D, density of 1031 ± 0.6 vs. 1030 ± 2.78, protein content of 32.8 ± 4.32 g/l vs. 274 

32.51 ± 8.87 g/l, but a lower fat content of 33.3 ± 3.93 g/l vs. 33.99 ± 14.47 g/l. Moreover, 275 

when comparing the results of this study with those conducted in four provinces (Guelma, 276 

Souk Ahras, Annaba, and El Taref) by Mahieddine et al. (2017), the results were within the 277 

range of acidity values [16.83-20.71°D], fat [32.01-60.00 g/l], lower for pH [6.97-7.23], but 278 

greater for density [1025-1027 kg/m3] and protein [28.7-31.23 g/l]. Furthermore, a study in 279 

the Kabylie region in highlands of central-North Algeria showed higher density (1032 ± 0.06 280 

kg/m3), fat (61.6 ± 2.64 g/l) and protein (69.8 ± 5.61 g/l). This could be due to the higher plant 281 

species richness and abundance in mountain areas (Manganelli et al., 2001). In the same way, 282 

milk qualities results were also close to ours obtained in recent study on raw cow milk heat 283 

treatments effects in northeastern Algeria (Tadjine et al., 2019), and in the study on the raw 284 

milk of central Algerian farms from Tissemsilt province conducted by Elhadj et al. (2015). 285 

From the literature, and especially for extensive livestock farming system, where grazing is 286 

the main source of feed, the nutritional composition of milk is highly related to changes in 287 

feed quality and availability, which itself varies according to the climatic conditions (Rojas-288 

Downing et al., 2018). Cattle grazing on poor quality pastures during periods of drought 289 

would lead to a decrease in dry matter intake and therefore lower milk, protein and casein 290 

yields (Pastorini et al., 2019). 291 
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Table 2. Physicochemical characteristics of the analyzed samples 292 

Parameters N Min-Max Mean ± SD CV (%) Standard 

pH 122 5.68-7.76 6.95 ± 0.37 5.42 6.6 to 6.8 

Density (mg/cm3) 122 1.005-1.044 1.031 ± 0.006 0.58 1.028 to 1.033 

Freezing point (°C) 122 -0.80 - -0.19 -0.56 ± 0.06 -11.54 -0.53 to -0.55 

Conductivity (μS/cm) 122 4.20-8.03 5.03 ± 0.52 10.50 4 to 5.5 

Titratable Acidity (°D) 122 10.33-31.33 18.78 ± 3.32 17.67 15 to 17 

Fat content (g/kg) 122 10.83-86.70 33.99 ± 14.47 42.58 31 to 33 

Protein content (g/kg) 122 11.10-51.03 32.51 ± 8.87 27.28 32 to 34 

Lactose (g/kg) 122 40.10-66.03 49.49 ± 4.27 8.63 45 to 51 

Minerals and Vitamins (g/kg) 122 5.23-8.79 7.25 ± 0.43 6.02 7 to 7.5 

Dry Degreased Extract (g/kg) 122 22.63-108.93 87.55 ± 10.22 11.68 91 

N: Number of the analyzed samples; SD: Standard Deviation; CV: Coefficient of Variation; Max: maximum; Min: minimum. 293 

 294 
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3.3.2. Bacteriological qualities of raw milk 295 

The descriptive characteristics of the enumerated flora reported in Table 3 show high 296 

variations between the different raw milk samples studied for the seven microbial groups 297 

analyzed. The concentrations values of Total Mesophilic Aerobic Flora of raw milk varied 298 

between 1.49 and 1.81 × 107 CFU ml-1 with an average of 2.55 × 105 CFU ml-1. Moreover, the 299 

results show that 9% of the total analyzed samples exceed the standard of 105 CFU ml-1 300 

required by the JORA (1998), indicating a very poor quality of raw milk. These finding are 301 

consistent with those reported by Bousbia et al. (2018) and Bachtarzi et al. (2015) in the same 302 

traditional extensive livestock system, where high contaminations were found with an average 303 

values of 11.69 × 105 CFU ml-1 and 28.8 × 106 CFU ml-1,  respectively. 304 

The results of total and fecal Coliforms showed significant contamination with an average of 305 

3.02 × 104 and 1.09 × 103 CFU ml-1, respectively. These values were extremely variable with 306 

standard deviations exceeding the average for each flora. 17.21% of all analyzed samples are 307 

not complying with national standards for fecal Coliforms (JORA, 1998), they are similar to 308 

the results obtained by (Bachtarzi et al., 2015) in the region of Constantine with an average of 309 

3.67 × 105 CFU ml-1, but they are much lower than the results reported by Sraïri et al. (2005) 310 

in Morocco with an average of 2.0 × 106 CFU ml-1. The average enumerations were very 311 

variable from one farm to another; this can result from the lack of hygiene practices, which 312 

remains scarce (washing the udder before and after the milking). The presence of Coliforms 313 

indicates poor hygienic and sanitary conditions during the milking and the subsequent 314 

manipulations (Yucel and Ulusoy, 2006). 315 

The sulphite reducing Clostridium have been detected in 31 (25.40%) analyzed samples with 316 

an average of 1.15 × 103 UFC ml-1. A contamination of 16.30 CFU ml-1 was reported by 317 

Bousbia et al. (2018) in the same region of Algeria. To our knowledge, few studies were 318 

conducted to estimate the frequencies of pathogenic bacteria in cattle raw milk collected from 319 



18 

Algeria; Hamdi et al. (2007) found that among 153 samples of milk collected from farms in 320 

Algiers and Blida, 3.18% were contaminated. For all analyzed samples, only 16 (13.11%) 321 

samples do not contain Staphylococcus aureus. The presence of high content of S. aureus in 322 

raw cow milk samples could be explained by the presence of mastitis (Montcho et al., 2021), 323 

or poor hygienic conditions. In addition, the contamination spreads very quickly, under 324 

favourable conditions such high temperatures and humidity, causing risk to human health 325 

(Alghizzi and Shami, 2021). 326 

Microbiological analysis has shown that one sample was contaminated by Salmonella spp. 327 

The origin of this contamination might be related to the unhygienic husbandry practices in 328 

traditional extensive livestock system (Montcho et al., 2021). In our study, several breeders 329 

have confirmed that they apply dung and urine on pasture to help fodder production during 330 

drought period, the urea is used to increase nutritive value of poor fodder, which is in 331 

agreement with the literature (Gunun et al., 2013). However, animal manure and urea might 332 

be sources of milk contamination, especially when hygienic conditions are absent (Montcho 333 

et al., 2021). Moreover, manure is considered as an important source of GHGs emissions 334 

(25% from total livestock GHGs emissions), mainly as methane and nitrous oxide, which can 335 

exacerbate global warming (Tubiello et al., 2015; Petersen et al., 2013). Consequently, 336 

microbial contamination increases under the effect of environmental temperatures elevation 337 

(Zweifel et al., 2005). 338 

 339 
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Table 3. Descriptive characteristics of studied flora and milk standards 340 

Flora (CFU ml-1) N Min-Max Mean ± SD CV (%) 
Standard 

(CFU ml-1) 

TMAF 122 1.81-1.49 × 107 2.55 × 105 ± 1.79 × 106 6.99 ×102 105 

T. Col. 122 0-2.36 × 106 3.02 × 104 ± 2.16 × 105 7.14 ×102 103 

F. Col. 122 0-1.81 × 104 1.09 × 103 ± 3.06 × 103 2.79 ×102 103 

Sulphite reducing Clostridium 122 0-1.00 × 105 1.15 × 103 ± 9.28 × 103 8.03 ×102 50 

Staphylococcus 122 0-8.00 × 106 2.12 × 105 ± 9.75 × 105 4.58 ×102 Absence /0.1 ml 

Salmonella 122 0-2.6 × 105 2.13 × 103 ± 2.35 × 104 1.10 ×103 Absence 

Yeasts and molds 122 0-1.6 × 103 1.11 × 102 ± 2.48 × 102 2.22 ×102 / 

TMAF: Total Mesophilic Aerobic Flora; T. Col.: total Coliforms; F. Col.: fecal Coliforms; N : Number of the analyzed samples; SD: Standard Deviation; CV: Coefficient of 341 
Variation; Max: maximum; Min: minimum. 342 

 343 
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4. Conclusion 344 

In this study, it is confirmed that climate change is influencing the temperature and 345 

precipitation level, cropland and pasture areas in the study areas. Moreover, taking into 346 

account the productive data, it could be concluded that the exploitation of the Algerian local 347 

breeds seems to be one of the best adaptation practices to climate change effects as it can 348 

promote biodiversity and keep a balanced ecosystem. Nevertheless, smallholder farmers have 349 

a low educational level and small farms characterized by low productivity, poor 350 

bacteriological quality of milk but an acceptable physicochemical quality. 351 

The implementation of selection and genetic improvement programs can increase the 352 

productivity and profitability of local cattle breeds. This can be beneficial for smallholder 353 

farmers and can provide them with a fair and stable income and good working conditions. 354 

Other strategies can also contribute to the fight against climate change effects like women 355 

empowerment promotion, policy issues development, development of suitable capacity 356 

building programs for different stakeholders. These could contribute significantly to social 357 

equity and local economies. 358 
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Abstract
During the recent decades, adverse effects of unexpected contaminants, such as heavy metals on raw cow milk quality, 
have threatened human health. The objective of this study was to determine heavy metal levels in raw milk collected from 
autochthonous bovine breeds in the eastern region of Algeria. Eighty-eight pooled milk samples were analyzed using 
atomic absorption spectrometry for Pb, Cd, Cr, Cu, Ni, Fe, and Zn, and dietary risks were estimated for infants, children, 
and adults with minimum, average, and maximum milk consumption scenarios. Results revealed that Pb (0.94 ± 0.49 mg/
kg), Cd (0.03 ± 0.01 mg/kg), and Cu (0.14 ± 0.08 mg/kg) levels in all analyzed samples were higher than their correspond-
ing maximum residue levels (MRLs). The task hazard quotient (THQ) values suggest potential risk for infants in the three 
scenarios from Pb, Cd, and Cr; for children in the three scenarios from Pb and in the high scenario from Cr; and for adults 
in the medium and high scenarios from Pb. The hazard index (HI) values were higher than 1, and the contributions of each 
metal to the overall HI followed a descending order of Pb, Cr, Cd, Ni, Zn, Cu, and Fe with values of 68.19%, 15.39%, 6.91%, 
4.94%, 3.42%, 0.88%, and 0.28%, respectively. Our results indicated that there may be a potential risk of heavy metals, 
especially Pb, for infants through raw cow milk consumption. Moreover, data actualization and continuous monitoring are 
necessary and recommended to evaluate heavy metal effects in future studies.

Keywords Risk assessment · Heavy metals · Raw cow milk · Hazard index · Maximum residue levels · Permissible limits

Introduction

The consumption of milk and its derivatives belongs to 
the most ancient eating practices [1] since these products 
are considered the most balanced food found in nature, 

containing major sources of nutrients, especially for chil-
dren, adults, and elderly people [2, 3]. Milk provides a good 
source of macro- and micronutrients such as lipids and pro-
teins (polyunsaturated fatty acids), calcium, phosphorus, 
essential amino acids, carbohydrates, vitamins, and several 
bioactive compounds that play a vital role in biochemical 
and physiological functions [4–6]. In addition to its impor-
tance, worldwide milk consumption per capita is projected 
to grow in developed countries from 22.2 in 2015 to 23.1 kg 
in 2027 and from 10.6 to 13.5 kg in developing countries [7].

In Algeria, FAO [8] reported that the per capita milk con-
sumption is about 0.276 kg/day; however, this value does not 
seem to correspond to the regional value of milk and dairy 
product consumption in the rural and pre-urban areas. Using 
a survey of 750 consumers in the Tebessa region (east of 
Algeria), Bentaleb et al. [9] reported that the daily calcium 
intake (854.4 ± 364.5 mg/day) corresponded to daily con-
sumption of 0.733 ± 0.312 kg of milk equivalent. Moreover, 
Belhadia et al. [10] reported that a non-negligible quantity 
of raw cow milk is used to supplement breastfeeding and 
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family self-consumption and is also sold through uncon-
trolled (informal to the) pre-urban agglomeration (80% 
of local production). These important quantities were not 
included in official data on milk consumption in Algeria. 
Furthermore, it is estimated that almost 80% of the milk 
marketed is handled by informal market traders. Milk pro-
duced by dairy cattle farms, and especially from extensive 
livestock, is sold directly to urban markets [11]. Therefore, 
the safety of raw cow milk must be assured, even more so 
when 80% of this milk is consumed directly by rural and 
pre-urban populations [10].

The main source of heavy metals in the different foods 
including cow milk is the environmental contamination [12], 
which originates from the earth’s crust and anthropogenic 
activities such as fuel combustion, the proximity of roads, 
mining and industrial areas, municipal and agricultural 
wastewater, and solid wastes [12–14]. Plants and fodder 
grown on soils irrigated with contaminated water permit 
heavy metals to pass into the land and water and then accu-
mulate in the animal feed [15–17]. Heavy metals may enter 
the trophic chain through the consumption of animal feed 
and are finally ingested by animals and human bodies [18]. 
The estimated human health risk for human revealed that 
ingestion is the primary route of exposure to heavy metals 
[19]. Lead (Pb) and cadmium (Cd) have no known benefi-
cial role for animals and plants [20, 21]. These metals are 
counted among the most potential toxic substances, caus-
ing carcinogenic, neurotoxic, nephrotoxic, and hematologic 
effects [22, 23], as well as reproductive disorders even at low 
concentrations [24]. Other metals, like nickel (Ni), zinc (Zn), 
chromium (Cr), copper (Cu), and iron (Fe), are essential 
nutritional elements for the human body; they are all crucial 
for the metabolism, and they play an important role in bio-
chemical functions [25]. Nevertheless, their presence at high 
concentrations in animals and the human body may become 
harmful to human health [13, 26]. Consuming foods contain-
ing metals may cause harmful effects on human health, such 
as renal dysfunction, raise blood pressure, and reduction in 
intelligence quotient in case of Pb [27]; teratogenic, carci-
nogenic, and neurotoxic in case of Cd [28, 29]; neurologic 
and immunologic in case of Ni [30]; cytotoxicity in the case 
of Zn [31]; and Wilson’s disease, cramps, and nausea in case 
of Cu [32]; Fe can cause tissue damage and organ failure 
and increases the risk of cancer [33]. It should also be noted 
that the non-carcinogenic and carcinogenic risk of heavy 
metals related to milk consumption is affected directly by 
milk consumption quantity.

To our knowledge, no health risk assessment has been 
provided to estimate the carcinogenic risks among infants, 
children, and adults following the consumption of raw cow 
milk in Algeria [11]. Therefore, this study aimed (i) to deter-
mine the levels of heavy metals (Pb, Cd, Cr, Cu, Ni, Fe, and 
Zn) in raw cow milk samples collected from eighty-eight 

extensive dairy farms located in different areas in Guelma 
Province, Algeria; (ii) to compare results of this study with 
data reported in published studies related to raw milk metals 
from different countries; and (iii) to estimate daily intake 
(EDI), hazard quotient (HQ), and hazard index (HI) of heavy 
metals from consuming raw cow’s milk.

Materials and Methods

Ethical Statement

This study was carried out as part of the Bovisol project 
(Breeding and management practices of indigenous bovine 
breeds: Solutions towards a sustainable future, www. rias. gr/ 
bovis ol). The Bovisol project (2018–2022) was a coopera-
tion of scientific teams from Greece, Tunisia, and Algeria 
[34]. The local Data Protection Board (DPB) and the local 
ethics committee have approved experimental protocols. The 
study involved data and/or milk sample collection from dif-
ferent farms, and participants were informed of the purpose 
of the project; they have given their consent for their par-
ticipation (complete the survey questionnaire and/or provide 
milk samples) and the use of the collected data and the gen-
erated results from our analysis for scientific publications 
[35]. For this research article, we present only toxicological 
results concerning milk collected in Algeria.

Milk Sampling

From the 175 visited farms, only 122 farmers agreed to pro-
vide milk samples for analysis. Of the 122 samples, 88 were 
used to perform the toxicological analysis (heavy metals). 
Raw milk samples were collected during the spring of 2019 
from different farms located in different regions of Northeast 
Algeria (Guelma province) as shown in Fig. 1. From each 
farm, about 0.5–1 L of milk was collected in sterile glass 
bottles, placed immediately in a cooler and then transported 
to the laboratory, where it was stored at − 20 °C until analy-
sis. All bottles were previously autoclaved at a temperature 
of 121 °C, under a pressure of 1 bar for 15 min. The vials 
were filled from a container of mixing milk, respecting the 
Good Laboratory Practices (GLP) and the rules of asepsis 
(disinfection of the hands). In order to take account of the 
real field conditions, no conservative was added.

Heavy Metal Quantification

Raw milk samples (10 mL) were digested using 4 mL nitric 
acid  (HNO3) at 68% (CAS: 7697–37-2) (Sigma Aldrich, St. 
Quentin Fallavier, France) in ceramic capsules. The acid 
solution of milk was digested in a heating plate up to 370 °C 
for 1 h and then placed in a muffle furnace at 500 °C for 

http://www.rias.gr/bovisol
http://www.rias.gr/bovisol
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4 h. The volume of digested samples was made up to 50 mL 
with distilled water containing 1% (v/v) of  HNO3. After, 
they cooled to the room’s ambient temperature. Digested 
milk sample was filtered through a 0.45-mm membrane filter 
(Merck, Lyon, France) before analysis. Levels of Pb, Cd, 
Cr, Fe, Zn, Ni, and Cu were detected using a flame atomic 
absorption spectrometry (FAAS) (Aanalyst400, Perkin 
Elmer, USA).

Blanks, which were prepared with acid treatment, with-
out samples, were subject to the same digestion proce-
dures. Standard calibrations were developed to quantify the 
amounts of Pb, Fe, Cr, Ni, Zn, and Cd in raw milk samples. 
The standard solutions were prepared with multi-element 
standard solution (10 mg/L, SPEX, USA), and the calibra-
tion curves for Pb, Fe, Cr, Ni, Zn, and Cd were prepared 
based on six points. For all metals, the correlation coefficient 
of the regression line was calculated. The final results are the 
average of triplicates. The concentrations of each element 
are expressed in mg/kg.

Quality Control Procedure

All of the products complied with the quality standards 
of the European Pharmacopoeia (http:// www. edqm. eu/ en/ 
Homep age- 628. html). The developed method was validated 
for instrumental linearity and range, precision (expressed as 
relative standard deviation, RSD), accuracy, limit of detec-
tion (LOD), and limit of quantification (LOQ). Moreover, 
to check for possible contamination from the bottles used 
for storing the milk samples, three empty bottles were filled 

with 10 mL distilled water and placed in a − 20 °C freezer 
for the same duration of time as the milk samples. The 
thawed water aliquots were then analyzed for target element 
traces, and the results showed no evidence of target heavy 
metal contamination.

Linearity study was demonstrated by analyzing six dif-
ferent concentrations of heavy metals. For all metals, cor-
relation coefficient of the regression line was greater than 
0.99. In order to determine LOD and LOQ, ten blank sam-
ples were measured. For each element, LOD and LOQ were 
quantified as three times and ten times the standard deviation 
(SD) of the blank values, respectively [36, 37]. The LODs 
(LOQs) obtained for Ni, Zn, Cr, Cd, Cu, Fe, and Pb were 
0.002 mg/kg (0.0055 mg/kg), 0.11 mg/kg (0.29 mg/kg), Cr 
0.002 mg/kg (0.0056 mg/kg), 0.001 mg/kg (0.001 mg/kg), 
0.009 mg/kg (0.026 mg/kg), 0.015 mg/kg (0.063 mg/kg), 
and 0.012 (0.036 mg/kg).

To ensure the accuracy of the analytical method, the 
recovery studies were carried out by adding a known quan-
tity of analyte pre-analyzed by the proposed method. To 
check the accuracy of the analytical method, the recovery 
studies were performed to confirm the losses of heavy met-
als or contamination during sample preparation as well as 
matrix interferences during the measurement step. For the 
determination of the recovery, the spiking technique was 
used, i.e., the known concentration of Fe solution was 
added to the milk sample, and the resulting spiked samples 
were measured, calculated, and compared to the known 
value of Fe solution added. All analytical steps were per-
formed in three replicates with three different levels of Fe 

Fig. 1  Study area. Map showing 
the locations of the municipali-
ties investigated. Map created 
using the Free and Open Source 
QGIS

http://www.edqm.eu/en/Homepage-628.html
http://www.edqm.eu/en/Homepage-628.html
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concentration. All of the results of percentage recoveries 
for the studied metals ranged between 98.29 to 101.25%, 
which is within the expected SAA performance. The results 
of the recovery tests for samples were within the acceptable 
range for most metals [12]. Triplicate measurements of each 
sample (n = 88) were used for the analysis of trace metals 
in milk samples; values of relative standard deviations (% 
RSD) were less than 10% for all of the mean concentrations 
of metals; otherwise, the results were rejected according 
to the recommendations of Mitra and Brukh [38], and the 
measurement was repeated through a full reanalysis on new 
digestion.

Risk Assessment

Estimated Daily Intake (EDI)

Estimated daily intake (EDI) of Pb, Cd, Fe, Ni, Zn, and Cr 
by consumption of raw cow milk was calculated according 
to the following equation [39].

where  CMetal (mg/kg, on wet weight basis) means the metal 
level of raw cow milk samples and  WMilk represents the daily 
average consumption of raw cow milk (kg/day). We assumed 
three consumption scenarios: low scenario (1 serving/day), 
average scenario (2 servings/day), and high scenario (3 serv-
ings/day) (consistent with the recommended serving size for 
the Food Dome Dietary Guidelines for Arab Countries) for 
infants, children, and adults, respectively [40, 41]. Moreover, 
to detect the most exposed groups, estimated daily intake 
was calculated for people of 3 various age groups: infant, 
children, and adult, taking into account the average body 
weight and milk intake.

BW (body weight) represents the average body weight 
of 10 kg for infants, 30 kg for children, and 70 kg for adults 
[42].

The EDI (mg/kg BW/day) of Pb, Cd, Cr, and Zn was com-
pared with provisional tolerable daily intake (PTDI) set by 
the Joint FAO/WHO Expert Committee on Food Additives 
[43–45], while the daily intake (mg/day) of essential heavy 
metals (Cu, Ni, and Fe) was compared with recommended 
dietary allowances (RDAs) values established by the Food 
and Nutrition Board of the Institute of Medicine [46].

Target Hazard Quotient Determination

To assess the human health risk related to the consumption 
of raw cow milk with heavy metals, the target hazard quo-
tient (THQ) was established by the US Environmental Pro-
tection Agency [47] for the estimation of non-carcinogenic 

EDI =
(CMetal∗ WMilk)

BW

risk associated with the reference dose and exposure. The 
THQ was evaluated based on the following equations [31, 48].

In the above equation, EDI is already explained, and 
RfDo is the reference oral dose (mg/kg/day). The refer-
ence dose (RFDo) for Cd, Pb, Zn, Cu, Ni, Fe, and Cr are 
0.001, 0.0035, 0.3, 0.04, 0.02, 0.7, and 0.003 mg/kg BW/
day, respectively [49–51]. If the THQ value is greater than 
1, potential non-carcinogenic effects could occur, whereas 
adverse health effects would be unlikely experienced when 
THQ < 1 [47, 52].

Hazard Index Determination

During our life, we are exposed to mixtures of contaminants 
and pollutants most often present in very low doses [53, 54]. 
Hazard index (HI) was performed to assess the cumulative 
risk of more than one metal contained in raw cow milk cal-
culated by summing the THQ of each metal in this study 
according to the following equation [24].

HI value below 1 means that the risk for human con-
sumption was considered acceptable and safe, whereas an HI 
index higher than 1 indicates that its consumption should be 
considered a potential health concern [55–57].

Data Analysis

The results are expressed in the form of the mean ± SD 
(standard deviation). Data were analyzed using R 4.1.2 ver-
sion [58]. Exposure to heavy metals from milk consumption 
in this region was calculated considering low (1 serving/
day), medium (2 servings/day), and high (3 servings/day) 
daily milk consumption by infants, children, and adults.

Results and Discussions

Concentrations of Heavy Metals in Raw Cow Milk

Descriptive statistical data of the seven heavy metal concen-
trations in the raw cow milk collected from eighty-eight tra-
ditional farms with native bovine breeds in Guelma district 
in Algeria are presented in Table 1. The average concentra-
tions (mg/kg) of the heavy metals were ranked as follows: 
Zn (4.02 ± 0.89) > Pb (0.94 ± 0.49) > Fe (0.76 ± 1.25) > Ni 
(0.39 ± 0.68) > Cu (0.14 ± 0.08) > Cr (0.18 ± 0.20) > Cd 

THQ =
EDI

RfDo

HI = THQPb + THQCd + THQCr + THQFe

+ THQNi + THQCu + THQZn
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(0.03 ± 0.01). The average concentrations of Cd, Zn, Cu, 
Fe, and Pb were above the maximum residue levels (MRLs) 
set by the International Dairy Federation (IDF) of 0.0026, 
3.28, 0.01, 0.37, and 0.02 mg/kg, respectively [59], while 
average concentrations of Ni and Cr were below MRLs 
(Table 1). The results of our study revealed that the con-
centrations of Pb, Cd, and Cu in all the analyzed samples 
were more than their corresponding MRLs, while 82.95%, 
42.04%, 15.90%, and 5.68% of Zn, Fe, Cr and Ni samples, 
respectively, exceeded their MRLs.

The high concentrations of Cd in raw cow’s milk in the 
study area are related mainly to food production. Olsson 
[60] reported that the concentrations of Cd in raw milk vary 
depending on the Cd content in food production. A study 
conducted by Tu et al. [61] suggested that the main sources 
of Cd in animal feed are different minerals such as phos-
phate, fish meal, and trace element. Moreover, Caggiano 
et al. [62] indicated that Cd concentrations in milk coming 
from low environmental pollution areas were higher than 
those found in industrial and polluted areas. The highest 
levels of Pb in all analyzed milk samples might be mainly 
a consequence of Pb emission in the water and soil from 
road traffic as leaded gasoline is the major source of Pb in 
the atmosphere [63, 64]. Recently, and to counteract this Pb 
pollution, the Algerian government proceeded to the gen-
eralization of unleaded fuel throughout the country [65], a 
decision already taken in Europe since the 1970s, and it has 
already shown its effectiveness [66].

The highest Zn and Cr concentrations in raw cow milk 
were recorded in Bouchegouf and Djebala villages, where 
farmers of these villages use the Seybouse River for irri-
gation, farming, and watering animals. The Seybouse 
River would be the probably main contamination factor of 
heavy metals in water and animals feed, where high con-
centrations of Pb 1.75 ± 0.04 mg/L (1.72–1.80 mg/L), Cd 
0.07 ± 0.00 mg/L (0.07–0.08 mg/L), and aluminum (Al) 
0.37 ± 0.03 mg/L (0.36–0.39 mg/L) have been recorded 
[67]. Talbi and Kachi [68] reported high concentrations 
(58.8–235.2 mg/kg) of Ni in different locations of sediment 
in Seybouse River. The highest values of Fe in raw cow 
milk are related mainly to crustal sources. Moreover, Fe is 

associated with anthropogenic activities such as industrial 
processes and traffic sources [64]. The highest Fe concen-
tration was observed in Maouna region close to a marble 
deposit area and brick factories, which is in agreement with 
data published previously in the same region [13].

Heavy metal concentrations in raw cow milk reported by pre-
vious studies across the globe are summarized in Table 2. The 
Cd level measured in this study was consistent with the levels 
reported in milk collected from cows reared close to highways 
in Turkey [69], as well as from milk collected in dairy farms in 
Bangladesh, [22], and from cows reared near the metallurgical 
complex in India [70], but were lower than the Cd concentra-
tions reported in Slovak, from cows reared in agricultural sector 
[71], and in Ethiopia from high mineral enrichment and metal 
leaching [51]. However, the level was higher than the Cd level 
reported in Sudan from cows reared around sugar cane plants 
[72] and from cows reared in a rural region in Libya [73].

Fe concentrations detected in this study were in agree-
ment with those reported by Ahmad et al. [86] in Pakistan 
but were lower than the Fe concentration reported in the 
trans-Himalayan high-altitude region in India [83] and Tur-
key, near highways. However, the concentration of Fe was 
higher than the concentration reported in China by Zhou 
et al. [75] and in Poland from milk collected in intensive 
production farms [84].

Lower concentrations of Cu than those recorded in this 
study were reported in industrial regions in Iran [81] and 
in Bangladesh [74] and higher than the level reported in 
Bangladesh from dairy farms [22], in Poland from intensive 
milk production farms [84], and in Romania from eastern 
Carpathians Rodnei mountains [87].

Concerning Ni, concentrations found in this study were 
higher than levels reported in Iran from traditional dairy 
farms [82], and in Pakistan from farms located near the cities 
with high urbanization and industrialization [30], but lower 
than levels reported in Slovak from the agricultural sector 
in Nitra region [71] and copper mining areas in India [80].

The level of Zn in raw cow milk collected in our study 
region was higher than the level reported in the trans-Hima-
layan high-altitude region in India [83] and from high mineral 
enrichment and metal leaching in Ethiopia [51]. However, Zn 

Table 1  Heavy metal levels 
(Ni, Zn, Cr, Cd, Cu, Fe, and Pb) 
in raw cow’s milk (mg/kg) in 
Guelma area, Algeria

SD standard deviation, MRL maximum residue limit values

Element Ni Zn Cr Cd Cu Fe Pb

Mean ± SD 0.39 ± 0.68 4.02 ± 0.89 0.18 ± 0.20 0.03 ± 0.01 0.14 ± 0.08 0.76 ± 1.25 0.94 ± 0.49
% Samples 

exceeding 
MRLs

5.68 82.95 15.90 100 100 42.04 100

Min 0.007 0.33 0.007 0.01 0.032 0.063 0.041
Max 4.11 6.48 1.28 0.06 0.51 7.82 2.15
MRL 1 3.28 0.2 0.0026 0.01 0.37 0.02
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concentrations were lower than those reported by Capcarova 
et al. [71] in agricultural areas in Slovak and close to those 
reported near highways in Borena region in Ethiopia [77].

The level of Cr reported in our area was higher than the 
level reported near heavy industry plants in Turkey [69] and 
India from cows rearing near the vicinity of iron mining 
areas [55]. Cr levels were lower than levels reported in Egypt 
near industrial air pollution areas [78] and in Ethiopia from 
cows watering in textile treatment pounds [79].

Reported Pb levels in the present study were lower than 
levels measured close to highways in Turkey [69] and Paki-
stan from milk collected in urban areas [85]. However, 
they were higher compared to those recorded in raw cow 
milk from industrial areas in China [76] and a high mineral 
enrichment and metal leaching area in Ethiopia [51].

Health Risk Assessment

Estimated Daily Intake (EDI) and Tolerable Daily Intake (TDI)

Results of EDI, PTDI, and RDA of the metals in question are 
summarized in Table 3. The EDI values of Ni, Zn, Cu, Fe, and 
Cr for infants, children, and adults and in the three scenarios are 
lower than the relative legal limit (PTDI and RDA) values, and 
thus it can be suggested that raw cow milk consumption does 
not pose a health risk for consumers of all ages for Ni, Zn, Cu, 
Fe, and Cr. Most studies showed similar results to those reported 
in Guelma region. Boudebbouz et al. [39] reported that the EDI 
values of Cu and Fe across the globe were lower than their 
RDAs, while the EDI value of Ni was reported slightly higher 
than its RDA only in four out of 29 regions across the globe.

The mean EDI value of Cd was below 0.0083 mg/kg BW/
day for an adult and children with the three scenarios and for an 
infant with the low scenario indicating that there is no health 
risk associated with the Cd intake from milk consumption for 
an adult and children consuming 1, 2, or 3 servings of cow milk 
per day and for infant consuming only 1 serving of cow milk per 
day (Table 3). However, the EDI of Cd was above 0.0083 mg/
kg BW/day for an infant with medium and high scenarios indi-
cating that there is a health risk associated with Cd intake from 
milk consumption for an infant consuming 2 or 3 servings of 
raw cow milk per day. In Peru, the same results were reported 
by Castro-Bedriñana et al. [88] in the extensive farming system 
near mining-metallurgical industries areas, where the EDI of Cd 
for adult consumers is below the PTDI value while in 2-year-old 
children with a high milk intake is exceeding the PTDI.

Results showed that the mean EDI value of Pb was far 
above 0.0036 mg/kg BW/day for an infant, children, and 
adult with the three scenarios indicating that there is a health 
risk associated with Pb intake from milk consumption for all 
ages consuming 3, 2, or even 1 serving by day. Several stud-
ies have reported values of Pb EDI higher than their PTDI 
values [71, 89].SD
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Non‑carcinogenic Health Hazard (THQs)

The non-carcinogenic risks from consumption of raw cow 
milk by the adults, children, and infants were assessed for 
three scenarios (1, 2, and 3 servings of cow raw milk/day) 
based on the target hazard quotient (THQ). THQ values of 

Ni, Zn, Cu, and Fe, for adults, children, and infants, were < 1 
in the three scenarios (Table 4). However, for Cd, the THQ 
for infants in the three scenarios (1, 2, and 3 servings of 
cow milk/day) was higher than 1. Also, Cr THQ values were 
recorded as higher than 1 for children in the high scenario 
(3 servings of cow milk/day) and for infants in the three 

Table 3  Daily intakes (mg/day) through milk consumption in comparison to PTDI values (for Pb and Cd) and to RDA values (for Ni, Fe, and 
Cu)

SD standard deviation, S/day serving/day. PTDI values: Pb 0.0036  mg/kg BW/day; Cd 0.00083  mg/kg BW/day; Cr 0.3  mg/kg BW/day; Zn 
25 mg/kg BW/day. RDA values: Ni 1 mg/day; Fe 45 mg/day; Cu 0.9 mg/day
PTDI tolerable daily intake, RDA recommended daily allowance

Element Daily intakes (mg/day), mean ± SD, and range (min–max)

Adult Children Infant

1 S/day 2 S/day 3 S/day 1 S/day 2 S/day 3 S/day 1 S/day 2 S/day 3 S/day

Ni 0.0007 ± 0.0006
(0–0.0032)

0.0014 ± 0.0013
(0.0.0065)

0.0021 ± 0.0019
(0–0.0097)

0.0016 ± 0.0014
(0–0.0075)

0.0033 ± 0.0029
(0–0.015)

0.0049 ± 0.0044
(0–0.022)

0.0049 ± 0.0044
(0–0.022)

0.0099 ± 0.0088
(0–0.045)

0.015 ± 0.013
(0–0.067)

Zn 0.013 ± 0.0031
(0–0.22)

0.0272 ± 0.0061
(0–0.044)

0.0408 ± 0.0092
(0–0.0558)

0.031 ± 0.0071
(0–0.051)

0.0635 ± 0.014
(0–0.10)

0.0952 ± 0.021
(0–0.15)

0.0952 ± 0.021
(0–0.15)

0.1904 ± 0.042
(0–0.30)

0.286 ± 0.064
(0–0.46)

Cr 0.0006 ± 0.0007
(0–0.0043)

0.0012 ± 0.0013
(0–0.0086)

0.0018 ± 0.0020
(0.0001–0.013)

0.0014 ± 0.0015
(0.00006–0.010)

0.0029 ± 0.0031
(0.0001–0.020)

0.0043 ± 0.0047
(0.0002–0.030)

0.0043 ± 0.0047
(0.0002–0.03)

0.0086 ± 0.0093
(0.0003–0.060)

0.013 ± 0.014
(0–0.091)

Cd 0.0001 ± 0.0000
(0–0.0002)

0.0002 ± 0.0001
(0.0001–0.0004)

0.0003 ± 0.0001
(0.0001–0.0006)

0.0002 ± 0.00007
(0.00008–0.00047)

0.0004 ± 0.0001
(0.0002–0.0009)

0.0006 ± 0.0002
(0.0002–0.0014)

0.0006 ± 0.0002
(0.0002–0.0014)

0.0013 ± 0.0004
(0.0005–0.0028)

0.002 ± 0.001
(0.001–
0.004)

Cu 0.0005 ± 0.0003
(0.0001–0.0017)

0.0009 ± 0.0005
(0.0002–0.0035)

0.0014 ± 0.0008
(0.0003–0.0052)

0.0010 ± 0.0006
(0.00025–0.0040)

0.0022 ± 0.0012
(0.0005–0.0081)

0.0033 ± 0.0018
(0.0008–0.012)

0.0033 ± 0.0018
(0.0008–0.012)

0.0065 ± 0.0036
(0.0015–0.024)

0.01 ± 0.005
(0.002–
0.036)

Fe 0.0026 ± 0.0042
(0.0002–0.0256)

0.0052 ± 0.0084
(0.0004–0.053)

0.0078 ± 0.0126
(0.0006–0.079)

0.0060 ± 0.0098
(0.0005–0.061)

0.0121 ± 0.019
(0.001–0.12)

0.0181 ± 0.029
(0.0015–0.185)

0.0181 ± 0.029
(0.0015–0.185)

0.0362 ± 0.059
(0.003–0.37)

0.054 ± 0.089
(0.004–0.55)

Pb 0.003 ± 0.0017
(0–0.073)

0.006 ± 0.003
(0–0.015)

0.0095 ± 0.005
(0–0.022)

0.0074 ± 0.0039
(0–0.017)

0.015 ± 0.0078
(0–0.034)

0.022 ± 0.012
(0–0.050)

0.022 ± 0.012
(0–0.050)

0.044 ± 0.023
(0–0.10)

0.067 ± 0.035
(0–0.15)

Table 4  Target hazard quotient (THQ) values and hazard index (HI) for heavy metals (Ni, Zn, Cr, Cd, Cu, Fe, and Pb) in raw cow’s milk

SD standard deviation, S/day serving/day

Element Target hazard quotient (THQ) values, mean ± SD, and range (min–max)

Adult Children Infant

1 S/day 2 S/day 3 S/day 1 S/day 2 S/day 3 S/day 1 S/day 2 S/day 3 S/day

Ni 0.065 ± 0.11
(0.0012–0.69)

0.13 ± 0.23
(0.002–1.39)

0.20 ± 0.35
(0.004–2.09)

0.15 ± 0.27
(0.003–1.63)

0.31 ± 0.54
(0.01–3.25)

0.46 ± 0.81
(0.01–4.88)

0.46 ± 0.81
(0.01–4.88)

0.92 ± 1.62
(0.02–9.75)

1.38 ± 2.42
(0.02–14.63)

Zn 0.045 ± 0.010
(0.003–0.073)

0.09 ± 0.02
(0.01–0.15)

0.14 ± 0.03
(0.01–0.22)

0.11 ± 0.02
(0.01–0.17)

0.21 ± 0.05
(0.02–0.34)

0.32 ± 0.07
(0.03–0.51)

0.32 ± 0.07
(0.03–0.51)

0.64 ± 0.14
(0.05–1.02)

0.95 ± 0.21
(0.08–1.54)

Cr 0.20 ± 0.22
(0.007–1.44)

0.41 ± 0.44
(0.02–2.88)

0.61 ± 0.67
(0.02–4.32)

0.48 ± 0.52
(0.02–3.63)

0.95 ± 1.03
(0.04–6.73)

1.43 ± 1.55
(0.06–10.09)

1.43 ± 1.55
(0.06–10.09)

2.86 ± 3.10
(0.11–20.18)

4.29 ± 4.66
(0.17–30.26)

Cd 0.09 ± 0.03
(0.03–0.2)

0.18 ± 0.06
(0.07–0.41)

0.28 ± 0.09
(0.10–0.61)

0.21 ± 0.07
(0.08–0.47)

0.43 ± 0.14
(0.16–0.95)

0.64 ± 0.21
(0.24–1.42)

0.64 ± 0.21
(0.24–1.42)

1.29 ± 0.42
(0.47–2.84)

1.93 ± 0.64
(0.71–4.27)

Cu 0.01 ± 0.006
(0.002–0.04)

0.02 ± 0.01
(0.01–0.09)

0.03 ± 0.02
(0.01–0.13)

0.03 ± 0.02
(0.01–0.10)

0.05 ± 0.03
(0.01–0.2)

0.08 ± 0.05
(0.02–0.30)

0.08 ± 0.05
(0.02–0.30)

0.16 ± 0.09
(0.04–0.61)

0.24 ± 0.14
(0.06–0.91)

Fe 0.003 ± 0.006
(0.0003–0.03)

0.01 ± 0.01
(0.001–0.08)

0.01 ± 0.02
(0.001–0.11)

0.01 ± 0.01
(0.001–0.09)

0.02 ± 0.03
(0.001–0.18)

0.03 ± 0.04
(0.002–0.26)

0.03 ± 0.04
(0.002–0.26)

0.05 ± 0.08
(0.004–0.53)

0.08 ± 0.13
(0.01–0.77)

Pb 0.90 ± 0.4
(0–2.07)

1.81 ± 0.95
(0.00–4.16)

2.72 ± 1.42
(0.00–6.24)

2.11 ± 1.11
(0.00–4.85)

4.23 ± 2.21
(0.00–9.70)

6.34 ± 3.32
(0–14.55)

6.34 ± 3.32
(0–14.55)

12.68 ± 6.64
(0–29.10)

19.02 ± 9.97
(0–43.66)

HI 1.32 ± 0.57
(0.35–3.04)

2.61 ± 1.15
(0.70–6.08)

3.98 ± 1.73
(1.05–9.12)

3.10 ± 1.34
(0.82–7.09)

6.20 ± 2.69
(1.63–14.19)

9.30 ± 4.03
(2.45–21.28)

9.30 ± 4.03
(2.45–21.28)

18.59 ± 8.06
(4.89–42.57)

27.89 ± 12.10
(7.34–63.85)
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scenarios (1, 2, and 3 servings of cow milk/day) (Table 4). 
Moreover, except for adults with a low scenario (1 serving of 
cow milk/day), all the THQ values of Pb were far higher than 
1 indicating the greatest health risk for infants and children 
consuming 3, 2, or even 1 serving of cow milk by day and 
for an adult consuming 2 or 3 servings of cow milk by day.

In this study, the “infant” group seems to be the most 
exposed, which is due to their low body weight and higher 
milk intake [76], indicating that this exposure would be 2 
to 3 times that of the general population on a bodyweight 
basis [15, 90].

Hazard Index (HI)

For the HI values, Pb made the largest contribution, fol-
lowed by Cr, Cd, Ni, Zn, Cu, and Fe with values of 68.19%, 
15.39%, 6.91%, 4.94%, 3.42%, 0.88%, and 0.28%, respec-
tively (Fig. 2). The HI values for infants consuming 1, 2, 
and 3 servings were in the range of 2.44–21.28, 4.89–42.56, 
and 7.33–63.84, respectively, for children were in the 
range of 0.81–7.09, 1.63–14.18, and 2.44–21.28, while 
for adults, they were in the range of 0.34–3.04, 0.69–6.08, 
and 1.04–9.12 (Table 4). HI values were far higher than the 
threshold of 1. This indicates that the exposure level of the 
investigated heavy metals through milk consumption may 
cause adverse effects over a lifetime for all ages with the 
three scenarios (1, 2, and 3 serving cow milk by day). As 
mentioned above, HI for raw cow milk was largely driven 
by the Pb, Cr, and Cd THQs for all ages, while the highest 
HI values were recorded for infants and children, which is in 
agreement with data reported in Peru [88] and China [76].

Finally, it is important to keep in mind that this study 
only considers raw cow milk intake collected from exten-
sive livestock, which is not the single food item consumed 
by the inhabitants of this region. Other studies have shown 

heavy metal contamination in fresh meat from cattle, sheep, 
chicken, and camel [91], in mollusk [92], as well as in sar-
dine, swordfish, merlu, and Abramis [93–96]. Moreover, 
milk proportion of the total mass of food consumed per day 
varies significantly depending on age [76]. Consequently, the 
non-carcinogenic risk presented by heavy metals could be 
increased [97]. This also explains the EFSA [98, 99] recom-
mendation, which advocates to investigate the risk of heavy 
metals in all products, including vegetables, grains, roots, 
fruits, and meat when the intake of children and adolescents 
considers milk and dairy products between 6 and 8%.

Conclusion and Recommendations

The average concentrations of heavy metals in the raw cow 
milk followed the order: Zn > Pb > Fe > Ni > Cu > Cr > Cd. 
The average concentrations of Cd, Zn, Cu, Fe, and Pb were 
above the maximum residue levels (MRLs), while the aver-
age concentrations of Ni and Cr were below MRLs. The 
estimation of the potentially harmful effects of heavy met-
als through raw cow milk consumption by comparing the 
estimated daily intake with toxicological limits (PTDIs or 
RDAs) showed that the consumption of milk does not pose 
a health risk for consumers of all ages with respect to Ni, 
Zn, Cu, Fe, and Cr. Whereas a health risk associated with 
Pb exposure for infants and children in the three scenarios 
and adults in high and medium scenarios were observed, 
moreover, a health risk associated with Cd concentration 
for infants in the medium and high scenarios was recorded.

THQ values of Ni, Zn, Cu, and Fe for infants, children, 
and adults were < 1 in the three scenarios. However, unac-
ceptable potential risk levels of Pb, Cd, and Cr were found 
for infants in the three scenarios, for children in the three 
scenarios from Pb and in the high scenario from Cr, and for 

Fig. 2  Target hazard quotient 
(THQ) and hazard index (HI) 
for seven heavy metal exposure 
following raw co milk consump-
tion for individuals by age and 
servings
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adults in the medium and high scenarios from Pb. HI values 
were far higher than 1, which means that the raw cow milk 
could cause adverse effects over a lifetime for all ages in 
the three scenarios. To our knowledge, there has been no 
study undertaken to assess the long-term effects of heavy 
metals in raw cow milk on infants, children, and adults in 
all regions of Algeria. Our results give a first clear picture 
of the impact of heavy metals in cow’s milk consumed by 
the inhabitants of the region. Further studies in depth are 
needed to assess the risk of heavy metals in other regions in 
Algeria and to explore the correlation of metal levels in milk 
samples with feed, water, and soil. These will provide all 
the required information before the implementation of man-
agement measures and policies to make the right decisions 
regarding polluted areas. Also, particular attention should 
be paid to heavy metal residues, and a greater number of the 
main foodstuff should be measured in future studies to check 
the presence of toxicological risks.

It can be recommended that improvement and proper 
monitoring of cattle feed quality, as well as the techniques 
of milk processing, should be carefully considered for public 
health safety in Algeria. Moreover, as a preventive action 
and to reduce raw cow milk contamination by heavy metals, 
it is necessary to develop alternative eco-friendly tools and 
methods for conventional chemical inputs. Finally, to reme-
diate heavy metal contamination of soil, water, and sedi-
ments, the use of necessary treatments such as chlorination, 
phytoremediation, thermal treatment, adsorption, chemical 
extraction, ion exchange, membrane separation, electrokinet-
ics, and bioleaching is strongly recommended.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12011- 022- 03308-1.
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This systematic review presents the potential toxicity of heavymetals such as lead (Pb), mercury (Hg), cadmium
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sources and on the assessment of the related human health risk. Multiple keywords such as “raw cow milk,
heavy metals, and human health” were used to search in related databases. A total of 60 original articles pub-
lished since 2010 reporting the levels of these metals in raw cow's milk across the world were reviewed. Data
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lected in area consists of granites and granite gneisses in India, while the highest level of Cd (12 mg/L) was re-
ported in barite mining area in India. Fe values in raw cow milk samples were above the WHO maximum limit
(0.37 mg/L) with highest values (37.02 mg/L) recorded in India. The highest Al level was (22.50 mg/L) reported
for raw cow's milk collected close to food producing plants region in Turkey. The Target Hazard Quotients (THQ)
values of Hgwere below 1 suggesting thatmilk consumers are not at a non-carcinogenic risk except in Faisalabad
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metals is positively associated with diseases developments. Moreover, data actualization and continuous moni-
toring are necessary and recommended to evaluate heavy metals effects in future studies.
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1. Introduction

Over the centuries, milk and dairy products are considered as major
sources of nutritious foods, especially for children because they contain
macro- and micronutrients, such as vitamins and special fatty acids like
conjugated linoleic acid with nutraceutical action, which are essential
for growth, bone development, immune functions of the animal, and
the human body (Leksir et al., 2019; Malbe et al., 2010). From human
studies, several randomized clinical trials have demonstrated that con-
suming three or more servings of dairy foods per day has beneficial ef-
fects on nutrient and energy intakes in adults as well as of calcium,
magnesium and vitamin D compared with intakes of individuals who
consumed one or fewer serving of dairy foods per day (Rice et al.,
2013). Several elements like iron (Fe), zinc (Zn) and copper (Cu) are es-
sential for human body and play a crucial role in metabolism; they are
considered as co-factors in many enzymes and have a variety of bio-
chemical functions in the living organism. Nevertheless, their excess
levels in animal and the human body above the sanitary recommenda-
tions may become toxic to human health (Gall et al., 2015; Licata et al.,
2012; Varol and Sünbül, 2020). Other heavy metals such as cadmium
(Cd), lead (Pb) and mercury (Hg) are non-essential elements and
have no biological role and can cause toxic effects even at very low con-
centrations (Varol and Sünbül, 2020).

Therefore, the exposure to heavy metals present in food pose a
threat to human health, it differs from the other types of pollutants
with their long life exposure, their unsuitability for decomposition, for
their non-degradability, and also for their high levels of accumulation
along the food chain (Maas et al., 2011; Nkwunonwo et al., 2020).

Data from previous research studies show that the adverse human
health effects are associated with exposure to environmental heavy
metals, even at low concentrations, which considered as not harmful
by health authorities. Heavy metals such as lead (Pb) and cadmium
(Cd) can cross the placental barrier, and in utero exposure can affect
fetal brain differentiation causing neurotoxic effect including a decrease
in intelligence quotient, memory reduction and language disturbance
(Khalil et al., 2009; Payton et al., 1998; Rehman et al., 2018; Schwartz
et al., 2000). Moreover, the estrogenic activity of cadmium can affect
reproductive systems including disturbance of androgen-estrogen bal-
ance and steroidal hormone levels which are correlated with high risk
for development of breast cancer (Johnson et al., 2003; Nagata et al.,
2005).

Data from previous studies indicate the presence of heavy metals in
cow milk collected from different regions across the word (Elsaim and
Ali, 2018; Licata et al., 2004; Malhat et al., 2012; Najarnezhad and
Akbarabadi, 2013; Qin et al., 2009; Temiz and Soylu, 2012). However,
heavy metals contamination degree is not constant and differs depend-
ing exposure routes, environmental condition, animal's nutrition, stage
of lactation and animal breed (Bousbia et al., 2019; Fenta, 2014;
Pilarczyk et al., 2013; Safaei et al., 2020). In lactating cows reared around
industrial units, higher concentrations of lead and cadmium in milk
were associated with higher concentrations of these toxic pollutants
in forges and soil. Moreover, lead and cadmium can disturb the trace
minerals profile of themilk and negatively affect its nutritional qualities
(Patra et al., 2008).

Since the beginning of the 20th century, industrialization, urbaniza-
tion, and agriculture mechanization lead to an increase in heavy metals
pollution, which negatively impacts livestock systems and milk quality.
The objectives of this systematic review were to compare the concen-
trations of selected heavy metals including copper (Cu), iron (Fe) and
nickel (Ni) as well as toxic heavy metals involving aluminum (Al), cad-
mium (Cd), lead (Pb), and mercury (Hg) in the raw cow milk recorded
across the world during the last decade (2010–2020) (Fig. 1). Contam-
ination sources, regulations, and techniques used to detect heavymetals
levels in milk were also discussed. Finally, the calculation of potential
risks to human health related tomilk daily consumptionwas performed
using data extracted for heavy metals levels recorded from different
areas across the world.

2. Materials and methods

2.1. Literature search

This systematic review was carried out based on published original
articles in all publications (relevant research available 2010–2020). In



Fig. 1. Locationmapof raw cowmilk samples collected fromdifferent countries across theworld tomeasure heavymetals levels including copper (Cu), iron (Fe), aluminum(Al), cadmium
(Cd), lead (Pb), mercury (Hg), and nickel (Ni) around the world during the last decade (2010–2020).
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this review, international databases such as Google scholar, SCOPUS,
Medline (using PubMed as the search engine), and Web of Sciences
was searched for keywords of: “heavymetals”, “milk” in fields, title, ab-
stract and keywords (A flowchart depicting the choice of studies is re-
vealed in Fig. 2). After the first stage, the found articles were checked
for eligibility for this review. Finally, the essential data was extracted
through the selected articles and insert to spread sheet for further
analysis.
2.2. Inclusion and exclusion criteria

The following inclusion criteria were adopted: (1) studies that
assessed heavy metals levels in raw cow milk. The following exclusion
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Fig. 2. Flow diagram of the studies selection process following the PRISMA (preferred
reporting items for systematic reviews and meta-analyses).
criteria were adopted: (1) milk from other species such as goat, camel
and sheep; (2) processed milk, which designates raw cow milk that
has undergone several steps through various processes such as homog-
enization, sterilization or pasteurization, cream separation (whole milk,
semi-skimmed milk or skimmed milk), packaging…etc.; (3) raw milk
from cows who received daily oral metals administration; (4) scientific
articles not published in English language and (5) review or conference
abstracts or letters to the editor. For duplicate studies, the only article
with further detailed information was included.

2.3. Human risk assessment and exposure to toxic metals

2.3.1. Estimated Daily Intake
Metal Estimated Daily Intake (EDI) of Pb, Cd, Hg, Ni, Fe, Cu, and Al by

consumption of raw cow milk was calculated using the following for-
mula (Christophoridis et al., 2019).

EDI ¼ CMetal �WMilkð Þ
Body Weight kgð Þ

where:

CMetal (mg/kg, on wet weight basis) is mean metal level of raw cow
milk samples.
WMilk represents the daily average consumption of milk (kg).
BW (BodyWeight): average bodyweight of an adult was considered
as 70 kg.

The EDI (mg/kg BW/day) of non essential heavy metals such as Pb,
Cd, Hg, and Al were compared with provisional tolerable daily intake
(PTDI) set by the Joint FAO/WHO Expert Committee on Food Additives
(Joint and World Health, 2012), while the daily intake of essential
heavy metals (Cu, Ni, and Fe) were compared with recommended die-
tary allowances (RDAs) values established by the Food and Nutrition
Board of the Institute of Medicine (USIMPM, 2001).
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2.3.2. Target hazard quotients
To assess the human health risk from consuming raw cowmilk with

heavy metals, the target hazard quotients (THQ) was developed by the
environmental protection agency (EPA) in the US for the estimation of
potential human health risks (non-carcinogenic) associated with long
term exposure to chemical pollutants (EPA, 1989). The THQ was evalu-
ated based on the following THQ Equations (EPA, 2004; IRIS, 2010;
Rahmani et al., 2018).

THQ ¼ EF � ED�WMilk � CMetal

RFD� Body Weight � TA

CMetal, Body Weight, and WMilk are already above explained.
The frequency of exposure (EF) and the exposure period equivalent

to themean longevity (ED) for an adult were considered to be 365 days
in year and 70 years, respectively.

The TA (average time lifespan) was 25,550 days.
The reference dose (RFD0) for Cd, Pb, Hg, Cu, Ni, Fe, and Al are 0.001,

0.0035, 0.0003, 0.04, 0.02, 0.7, and 1 mg/kg BW/day respectively
(USEPA, 2011; USEPA, 2012).

3. Results

3.1. Characteristics of eligible studies

Computerized literature search on multiple scientific databases re-
sulted in a total number of 1540documents. 420were ruled out because
they were duplicates, or they did not meet inclusion criteria and
disqualified after review of title, abstract or manuscript [foods other
than milk (115), milk from other species than cow (780), processed
raw cowmilk,which undergoes several steps through various processes
(homogenization, sterilization or pasteurization, cream separation
(whole milk, semi-skimmed milk or skimmed milk), packaging…etc.)
(164), milk from cows who received daily oral metals administration
(n = 1)]. In conclusion, 60 studies satisfied the inclusion criteria and
were included in the systematic review.

3.2. Heavy metals contamination of raw cow's milk

3.2.1. Lead
Lead (Pb) is ubiquitous environmental metal, it is themost common

industrial metal that can pollute air, water, soil and food chain (Raikwar
et al., 2008). Widespread occurrence of lead in the environment is the
result of anthropogenic activities, such as mining, smelting, and refin-
ing. Other sources of Pb in the environment include natural activities,
such as volcanic activity, geochemical weathering and sea spray emis-
sions, and remobilization of historic sources, such as lead in soil, sedi-
ment and water from mining areas (UNEP, 2010). In 2017, the
Institute for Health Metrics and Evaluation has estimated that lead
exposure accounted for 1.06 million deaths and 24.4 million
Disability-Adjusted Life Years DALYs (IHME, 2015). Exposure to dietary
Pb interrupts the nervous and circulatory systems as well as affecting
several other organs of the body (Malhat et al., 2012). It can also cause
renal dysfunction, raise blood pressure, spontaneous absorption, ane-
mia, reduction in intelligence quotient, behavioral disturbance and neu-
rodegenerative diseases (Eid and Zawia, 2016) and joint weaknesses
(De Vasconcelos Neto et al., 2019; Gall et al., 2015).

There are a large number of published studies that have investigated
the level of Pb in raw cow's milk. In the present review we were able to
extract 55 studies that analyzed Pb in raw cow's milk samples collected
in 70 regions around the world, 66% (36 studies) used Atomic Absorp-
tion Spectrometry (AAS) technique, followed by Inductively Coupled
Plasma Mass Spectrophotometer (ICP-MS) (10 studies), other tech-
niques used were Inductively Coupled Plasma Atomic Emission Spec-
trometry (ICP-AES) (3 studies), Inductively Coupled Plasma Optical
Emission Spectrometry (ICP-OES) (3 studies), one study used Energy
Dispersive X-Ray Fluorescence (EDXRF) technique, and one study
used voltammetric analysis (VA) technique (Table 1).

The occurrence of Pb in raw cow's milk samples was presented in
Table 1; the highest Pb level reported in the last ten years (60 mg/L)
was obtained in rawcow'smilk samples collected frommatured grazing
cow's reared in area consists of granites and granite gneisses of Ar-
chaean age with innumerable dyke swarms and isolated dykes situated
in Tirupati area in Chittoor District, Andhra Pradesh (India) However,
these concentrations are strongly influenced by seasonal variations,
which are attributed to change in botanical composition of the herbage
mainly in winter season (Raghu, 2015). In the same way, high Pb level
was recorded (23.24± 0.30mg/L) in cow's milk collected from animals
during summer season and from cows drinking untreated main sewer-
age drainage water of Faisalabad city in Pakistan (Aslam et al., 2011),
this value is far higher than the maximum residual limit (0.02 μg/mL)
set by EC (2006). High Pb content (4.40±1.60mg/L)was also observed
byMalhat et al. (2012) in raw cowmilk collected in industrial air pollu-
tion area of Tokh city, El-Qaliubiya governance (Egypt). Also, high level
of Pb (3.80 ± 0.42 mg/L) was obtained in raw cow milk samples col-
lected from local producer of Nitra region (Slovak) compared to the per-
missible limit for milk according to Slovak law (0.02 mg/L) (Capcarova
et al., 2019).

Zhou et al. (2019) show that at the farm level, Pb concentrations
measured in milk produced from industrial polluted area in Tangshan
province (China) were significantly higher than those found in milk
from unpolluted areas in Qiqihar province (China) (1.43 μg/L vs.
0.16 μg/L, respectively). The mean concentration of Pb found in raw
milk produced in major industrial area in Multan city, Pakistan was
(0.03 ± 0.004 mg/kg), however, lower value was (0.01 ±
0.002 mg/kg) in samples collected in residential, and market zones
(Ismail et al., 2015). Fenta (2014) show that the average concentration
of Pb (0.8± 0.1mg/L) in samples collected from cow's watered directly
on a biological lagoon receiving the effluents of textile factory before
discharged to the downstream, Tikur Wiha river in Hawassa, southern
Ethiopia are significantly higher than those recorded in samples col-
lected from animals watered on Tikur Wiha river before joining the
waste water released from biological lagoon (0.4 ± 0.1 mg/L). In
Turkey, Bigucu et al. (2016) have studied the impact of geographic live-
stock implantation on rawcowmilk quality collected from three regions
in Biga county of Çanakkale province: Yeniçiftlik, Gümüşçay and
Şakirbey. The results show that the highest Pb concentration was
found in milk from Şakirbey region which was close to highways
(1.85 ± 0.09 mg/L), followed by those found in the milk collected
from Yeniçiftlik region which was near to heavy industry plants
(1.03 ± 0.05 mg/L) and the cow milk collected from Gümüşçay region
which was close to food producing plants (1.01 ± 0.05 mg/L), respec-
tively. In Ibadan, southern of Nigeria, Pb concentrations (0.34 ±
0.14 mg/L) obtained in milk collected from cow's reared in polluted
area located some meters away from the dump site, which character-
ized with plants averagely growing in the vicinity of the slag and leach-
ate were higher than those recorded in milk collected from animal
reared in unpolluted area, where the lead content is undetectable
(Ogundiran et al., 2012).

Derakhshesh and Rahimi (2012) reported a difference of Pb level
from two regions in Iran, the concentration of Pb in cow's milk collected
from area with industrial pollution of Tehran was high (0.02 ±
0.009 mg/L) compared to those found in the milk samples collected
from unpolluted area located on Yasuj province (0.005 ± 0.002 mg/L).
Pb concentrations above maximum residual limit (0.02 μg/mL) were
also observed in raw cow milk samples collected in rural area without
great industrial activities in different countries around the world. In
Croatia (Bilandžić et al., 2011), in Slovak (Capcarova et al., 2019),
Pakistan (Iftikhar et al., 2014), France (Maas et al., 2011), and in India
(Pérez-Carrera et al., 2016). The high level of Pb content in milk col-
lected from rural and unpolluted area could also be due to other factors
or sources such as transhumance along roads and/ormotorways, fodder
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contamination, climatic factors, such as winds, and the use of pesticide
compounds (Derakhshesh and Rahimi, 2012).

Results from Table 1 indicate that raw cowmilk samples analyzed in
developing countries such as Pakistan, Ethiopia, Nigeria, Mexico,
Argentina, Bangladesh, Egypt, Poland, and Sudan,have Pb concentra-
tions beyond the standard limit; In contrast, developed countries like
Spain, South Korea, Canada, and Croatia generally were found to have
less Pb contamination in raw cow milk samples (Bilandžić et al., 2016;
González-Montaña et al., 2012; Kim et al., 2016; Zwierzchowski and
Ametaj, 2019).

From several studies, Pb levels in raw cow's milk samples were
Below the Detectable Limit (BDL) of instrument. In Ethiopia, from
cow's reared near to main high way in Moyale province (Belete et al.,
2014), Sudan in grazing area (Elsaim and Ali, 2018), India from raw
milk samples collected from uranium mining area (Giri et al., 2011), in
Nigeria from cows reared in area considered free from contamination
(Ogundiran et al., 2012), in Libya from rural region (Elatrash and
Atoweir, 2014), and in China from small farms cooperatives, and in
raw cow's milk samples collected in summer season from cows reared
in granites and granite gneisses area (Qu et al., 2018; Raghu, 2015).

3.2.2. Cadmium
Cadmium (Cd) is one of themost toxic industrial and environmental

heavy metals because of its long half-life (15–30 years) and multiface-
ted deleterious effects on human health, such as teratogenic, carcino-
genic, hepatotoxic, nephrotoxic, skeletal and reproductive effects
(Domingo, 1994; Flora and Agrawal, 2017; Zhong et al., 2018), it can
be bio accumulated in various tissues especially liver and kidneys,
which amplifies the deleterious effects on human health (WHO,
2005). Exposure to Cd is often mixed with industrial emission sources
such as mining and smelting operations. Major industrial uses of Cd
are in electroplating, pigments and, particularly, plastics, plastic stabi-
lizers, and Ni-Cd rechargeable batteries (Flora and Agrawal, 2017).

In the present systematic review,wewere able to retrieve 47 studies
that analyzed Cd levels in raw cowmilk samples collected in 59 regions
across the world during the last ten years (Table 1). In most studies, Cd
level was measured using AAS technique. Cd values were compared
with the standard limit values (0.0026 μg/g) determined by the Interna-
tional Dairy Federation (IDF, 1979). This limit is outdated but still it is
the only acceptable maximum limit of Cd level in milk (Ismail et al.,
2019).

It should be noted that the Cd level in milk samples in thirty-six re-
gions in the world (61%) were above standard limit of 0.0026 μg/g (IDF,
1979), in data extracted from 18 regions (31%), Cd levels are below
standard limit (0.0026 μg/g), and in five studies (8%) Cd levels are
below detectable limit of instrument (BDL) (Table 1). The highest Cd
level (12mg/L)was found in raw cow'smilk samples collected from an-
imal reared close to area consist of granites and granite gneisses situated
in Tirupati area, in Chittoor District, Andhra Pradesh, in India (Raghu,
2015).

From literature, Cd levels in milk samples collected from cows
watering directly on a biological lagoon that receives the effluents of
textile factory before discharged to the downstream Tikur Wiha river
in Hawassa, southern Ethiopia was (0.2 ± 0.01 mg/L) which is 2 times
higher than the Cd levels in milk collected from cows watered on
TikurWiha river before joining thewastewater released frombiological
lagoon (0.1± 0.001mg/L) (Fenta, 2014). In Turkey, Bigucu et al. (2016)
obtained Cd level in raw cowmilk are varied between 0.39± 0.02mg/L
for cows reared near to highways in the region of Şakirbey; and 0.19 ±
0.01 mg/L in the region of Gümüşçay which is near to food producing
plants, and 0.19 ± 0.01 mg/L in the region of Yeniçiftlik near to heavy
industry plants. Besides, in Pakistan, Iftikhar et al. (2014) studied Cd
levels differences in cow's milk samples collected from two zones: the
first one is an urban area, which is located in the centre of the city and
hence was exposed to pollution, while the second one, is a rural area
which is away from industrial and traffic pollution, results recorded
were (0.7 ± 0.07 mg/L and 0.04 ± 0.01 mg/L) respectively. In the
same way, Elatrash and Atoweir (2014) described a significant differ-
ence between Cd levels in milk samples collected from rural and
heavy traffic intensity in Benghazi province, Libya (Table 1).

It could be observed that all studies reported a mean level of Cd in
milk above (0.0026 mg/L) were collected from polluted area, except in
three regions (5%) that showed a high Cd level in milk collected from
unpolluted area (Bilandžić et al., 2011; Capcarova et al., 2019; Fenta,
2014; Iftikhar et al., 2014). Three studies conducted in polluted area re-
ported a Cd level in milk samples below detectable limit of the instru-
ment (BDL) (González-Montaña et al., 2012; Ogundiran et al., 2012;
Raghu, 2015) (Table 1).

3.2.3. Nickel
Nickel (Ni) is an essential mineral element for humans, it acts as a

cofactor for a number of enzymes aswell as hormones but above certain
levels Ni may become toxic, and lead to cell damage, alteration of en-
zyme and hormone activities, oxidative stress and neurotoxicity
(Ismail et al., 2017). Data from twenty-two studies published from
twenty-nine regions across the world since 2010 were extracted then
analyzed. Fourteen out of twenty-two studies have analyzed Ni using
AAS technique or by ICP-MS (five studies), then ICP-OES (two studies),
and one study using EDXRF technique. Themean levels of Ni in raw cow
milk are presented in Table 1. The upper level of Ni intake per day
through dietary sources recommended by FNB (2001) is 0.3–1 mg/L.

The level of Ni in raw cowmilk samples across the globe ranged be-
tween BDL to 833 mg/L. The maximum levels of Ni (833 and 63 mg/L)
were recorded from milk samples collected from cows reared near to
area consists of granites and genesis in Tirupati area, and cows reared
near to Mangampeta barite mining area respectively in India (Raghu,
2015). Followed by Pakistan (23.5 ± 0.3 mg/L) from cows watering
sewerage drainage of Faisalabad city (Aslam et al., 2011). Also, in
Ethiopia, Fenta (2014) reported means level of Ni (1.6 ± 0.3 mg/L) in
raw milk collected from cows watered directly on a biological lagoon
of textile factory before discharged to the river downstream, was
slightly higher than those recorded in raw milk from animals watered
in river before joining the waste water (1.4 ± 0.2 mg/L). It should be
noted that only five studies out of twenty-two (22%) found to exceed
the maximum limit of Ni in raw milk (0.1–1 mg/L) recommended by
the Food and Nutrition Board (FNB, 2001).

Ni levels in raw cow'smilk collected frompolluted areawere usually
higher than those collected from unpolluted area. For instance, in
Pakistan, Iftikhar et al. (2014) found significant difference between
samples collected from urban and rural area (0.8mg/L vs.0.02mg/L) re-
spectively. In the sameway, Ni level in rawcow'smilk samples collected
from cows reared in the vicinity of Iron mining areas (0.2 mg/L) was
lower than those found in cows reared in the vicinity of copper mining
areas in India (0.62 mg/L) (Giri and Singh, 2019).

3.2.4. Mercury
Mercury (Hg) is a naturally occurring chemical element which can

be found in foodstuffs by natural causes. The most important anthropo-
genic causes of Hg pollution in the environment are mining and com-
bustion, agricultural materials, and industrial and urban discharges
(Bilandžić et al., 2011; Joint and FAO/WHO, 2011; Zhang and Wong,
2007). The European Union Regulation indicates 0.01 mg/kg as the
maximum Hg content in any food including milk (EU, 2015). To our
knowledge, there is not too much data on mercury residues in milk in
comparison with other trace metals (Table 1).

Here, we extracted data from a total of twelve studies published
since 2010 that analyzed Hg levels in raw cow's milk. The maximum
Hg level (0.55±0.01mg/L)was reported in the rawcow'smilk samples
from cows drinking sewerage water in Pakistan (Aslam et al., 2011).
Also; in Bangladesh, Kabir et al. (2017) found a high level of Hg in
milk samples collected from cows fed grass of the forage near which in-
dustrial waste are discharged (0.4 mg/L). Other studies showed that Hg
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level ranged from BDL to 0.06 mg/L (Arianejad et al., 2015; Bilandžić
et al., 2011; Cadar et al., 2015; Jolly et al., 2017; Najarnezhad and
Akbarabadi, 2013; Qu et al., 2018; Zhou et al., 2017; Zodape et al.,
2012), while in Spain one study conducted by González-Montaña
et al. (2019) analyzed milk samples collected from cows reared close
to the steel industry, all milk samples analyzed had Hg values below
the established detection limit. In Slovak, Capcarova et al. (2019) also
reported Hg levels in raw milk samples below the detection limit. The
present data indicate that the Hg levels in milk samples are generally
in safe limits except in the study conducted in Faisalabad province,
Pakistan (Aslam et al., 2011) (Table 1).

3.2.5. Iron
Iron (Fe) is an essential trace element that participates as catalyst in

several metabolic reactions; and as a component of hemoglobin, myo-
globin, cytochromes and other proteins, plays an essential role in the
transport, storage and utilization of oxygen. It is a cofactor for a number
of enzymes and its deficiency results in anemia and other pathologies
(Meshref et al., 2014), however due to its ability to generate reactive ox-
ygen species (ROS), the excess of iron can cause tissue damage and
organ failure, and increases the risk of cancer (Eid et al., 2017; Puliyel
et al., 2015). In milk and dairy products, a high Fe concentration can
cause a problem in processing technology due to its catalytic effect on
oxidation of lipids with development of unpleasant smell, bounding
preferably proteins and membrane lipoproteins of milk fat globules
(Lante et al., 2006).

In this systematic review, data from 21 studies published since 2010
that measure Fe concentrations in raw cow's milk in 30 regions across
the world were extracted and analyzed.

The maximum limit for Fe recommended is 0.37 mg/L (IDF, 1979).
The highest mean concentration of Fe in raw milk was found from
cows reared close to industrial air pollution area in El-Qaliubiya district,
Egypt (16.4 ± 8.4 mg/L) (Malhat et al., 2012), followed by samples of
cows reared near to iron mining area in west of Singhbhum, India
(11.4mg/L) (Giri and Singh, 2019). Also, a high level was found in sam-
ples collected from local farms in Beni-Suef, Egypte (8.9 ± 1.8 mg/L)
(Meshref et al., 2014). The mean level of Fe in raw cow's milk samples
across theworld ranged between 0.33mg/L and 16.4mg/L.Mean values
of Fe in milk samples are presented in Table 1 They were generally
above the maximum limit set by IDF (1979).

3.2.6. Copper
Copper (Cu) is an essential element for normal humangrowthbut its

excessive consumption lead to toxic effects on human health, primarily
Wilson's disease which is characterized by deficiency of ceruloplasmin
(Lawal et al., 2006). Here, 39 studies published since 2010 that mea-
sured the prevalence of Cu content in raw cow's milk in 54 regions
around the world were used. Cu levels were recorded using AAS tech-
nique (24 studies), ICP-MS technique (7 studies), ICP-AES technique
(3 studies), ICP-OES technique (3 studies), EXDRF technique (1 study),
and SV technique (1 study). Cu levels in milk samples from different
countries of world since 2010 were reported in Table 1. The mean
level of Cu in raw cow milk samples across the globe ranged between
0.0136 mg/L and 36 mg/L, they are above the maximum limit
(0.01 mg/L) (IDF, 1979).

The highest Cu levels were recorded in India from cows reared in
area considered as one of the largest barite deposits of the world in
Tirupati province (36mg/L), and in area consists of granites and granite
gneisses in Mangampeta in Kadapa District, Andhra Pradesh (28 mg/L)
(Raghu, 2015). It should be noted that the concentrations of Cu in raw
cow's milk in any area does not represent the concentration of the
whole country. Cu concentrations were influenced by local environ-
mental characteristic such as urban area, rural area, and industrial
area. In Pakistan Ogundiran et al. (2012) reported that the milk col-
lected from cows reared plants growing close to slag and leachate lo-
cated some meters away from dump site of Lagelu government had
mean Cu concentration (0.18 ± 0.09 mg/L) which was significantly
lower than Cu concentration (29.2±8.4mg/L) obtained in themilk col-
lected from region believed to be free from contamination located in
northern parts of Pakistan. A comparative study conducted in Peshawar
province, Pakistan showed that Cu concentration in milk from cows
feed in rural area (0.09 ± 0.004 mg/L) was significantly lower than Cu
concentration in milk (1.4 ± 0.009 mg/L) from cows reared in urban
area in Peshawar province, Pakistan (Iftikhar et al., 2014). Also, a high
Cu concentration (0.5 mg/L) was reported in the east of Singhbhum in
milk collected from cows reared close to copper mining area compared
to those reared in the west of Singhbhum close to iron mining area
(0.31 mg/L) in India (Giri and Singh, 2019).

3.2.7. Aluminum
Aluminum (Al) has historically been considered to be relatively non-

toxic in healthy individuals,without any apparent harmful effects. How-
ever, there is now abundant evidence that Al may cause adverse effects
on the nervous system and high intakes of it through such sources as
buffered analgesics and antacids may lead to pathological changes in
the central nervous, skeletal and hematopoietic systems (Ayar et al.,
2009).

Only seven studies investigating the content of Al in raw cow's milk
samples collected in eleven regions in the world have been published
from 2010 to date. Two conducted in China, two in Spain, one in
Turkey, one in Canada, and one in India (Table 1). Two techniques
were used to measure Al in raw cow's milk samples (ICP-MS and ICP-
AES). Al levels in raw cow's milk samples across different countries
ranged between 0.007 mg/L and 22.5 mg/L (Table 1).

Raw's milk samples from cows reared near to food producing plants
in Gümüşçay district had higher Al levels (22.5 mg/L) compared to
those obtained in samples collected from cows reared near to heavy in-
dustry plants (19.53mg/L) in Yeniçiftlik district and those found in sam-
ples collected from cows reared near to highways (17.32 mg/L) in
Şakirbey district, Turkey (Bigucu et al., 2016). Also, a low level of Al
(0.05 mg/L) was recorded in Shaanxi district, China, this value was sig-
nificantly correlated with Al level in feed (492.00 mg/L) (Zhou et al.,
2017). The lowest level of Al (0.007 mg/L) was recorded in Alberta,
Canada (Zwierzchowski and Ametaj, 2019).

4. Risk assessment of raw cow milk consumption

4.1. Estimated Daily Intake (EDI)

In Table 3, the daily intake via dairy products consumption (mg/day)
were calculated for Ni, Fe and Cu and are compared to the Recom-
mendedDietary Allowances (RDAs) that have been set for thesemetals.

The RDAs regarding Ni is set to 1 mg/day. The daily intake (mg/day)
of Ni in raw cowmilk across the globe ranged from 0 to 1.71 (mg/day),
which represent 0–171.36% of the total RDA. The raw cow milk of
Tirupati, India exhibited the highest EDI (1.71mg/day)which represent
171.36% of RDA. It should be noted that the daily intake of Ni in 25 re-
gions (86.2%) out of 29 through the globe were <3.79 × 10−3 which
represent a maximum of 0.37% of RDA (Table 3).

As for Fe, the daily intake ranged from1.18 × 10−4 to 2.49 × 10−2mg/
daywhich represent 0.0003% - 0.06%of RDAvalue of 45mg/day (Table 3).
In case of Cu, the RDAs is set to 0.9mg/day. The daily intake of Cu through
raw cowmilk consumption ranged from 2.14 × 10−5 to 7.67 × 10−2 mg/
day which represent 0.002% - 8.52% of RDA.

Dietary exposure to Pb, Cd, Hg, and Al through rawmilk consuming
was evaluated by calculating EDI of these metals based on the current
analysis and compared with provisional tolerable daily intake (PTDI).
The Joint FAO/WHO Expert Committee on Food Additives recom-
mended the provisional tolerable weekly intakes (PTWI) of Pb as
25 μg/kg BW (equivalent to 3.6 μg/kg BW/day) (FAO/WHO, 1993). The
calculation of the EDI milk of collected data showed that the exposure
of Pb through raw cow milk consumption around the world covers



Table 2
Estimated Daily Intake (EDI) in (mg/kg BW/day) of Pb, Cd, Hg, Al in comparison to PTDI values.

Reference Location Pb Cd Hg Al

EDI (% TDI) EDI (% TDI) EDI (% TDI) EDI (% TDI)

Abdalla et al. (2013) Sudan 2.60E-03 (72.31) 3.11E-06 (0.37) – –
Ahmad et al. (2017) Pakistan, Pakhtunkhwa – 3.37E-04 (40.6) – –
Akele et al. (2017) Ethiopia, North Gondar 2.3E-04 (6.4) 4.52E-04 (54.4) – –
Akhtar et al. (2015) Pakistan, Multan 8.43E-04 (23.41) 4.21E-04 (50.77) – –
Arianejad et al. (2015) Iran, Arak – – 6.86E-08 (0.12) –

Iran, Arak – – 6.17E-08 (0.11) –
Aslam et al. (2011) Pakistan, Faisalabad 9.79E-02 (2715.8) 7.16E-04 (86.3) 2.32E-03 (4066.42) –
Bakircioglu et al. (2018) Turkey, Edirne – – – 1.72E-03 (1.27)
Bigucu et al. (2016) Turkey, Şakirbey 1.1E-02 (304.6) 2.31E-03 (278.5) – 1.03E-01 (73.3)

Turkey, Yeniçiftlik 6.1E-03 (169.6) 1.13E-03 (135.7) – 1.16E-01 (82.7)
Turkey, Gümüşçay 6.0E-03 (166.3) 1.13E-03 (135.7) – 1.33E-01 (95.2)

Bilandžić et al. (2011) Croatia, Northern 2.7E-04 (7.0) 4.44E-06 (0.54) 4.44E-06 (7.7) –
Croatia, Southern 1.3E-04 (3.7) 1.33E-05 (1.6) 3.11E-05 (54.5)- –

Bilandžić et al. (2016) Croatia 4.4E-05 (1.2) – – –
Bousbia et al. (2019) Algeria, Guelma – 1.18E-04 (14.25) – –
Cadar et al. (2015) Romania, Eastern Carpathians 4.8E-05 (1.3) 7.93E-06 (0.96) 7.93E-06 (13.9) –
Capcarova et al. (2019) Slovak, Nitra region 6.4E-03 (177.9) 4.55E-04 (54.8) – –
Castro-Gonzalez and Calderon-Sanchez (2018) Mexico, Puebla 8.7E-05 (2.4) – – –
Chirinos-Peinado and Castro-Bedriñana (2020) India, Peru 1.29E-03 (33.1) 4.11E-05 (4.9) – –
Derakhshesh and Rahimi (2012) Iran, Tehran 1.4E-05 (0.3) – – –

Iran, Yasuj 3.4E-06 (0.1) – – –
Dizaji et al. (2012) Iran, East Azerbaijan 6.9E-06 (0.2) 4.11E-07 (0.05) – –
El Sayed et al. (2011) Egypt, Menofia 5.0E-04 (13.8) 1.66E-05 (2) – –
Elatrash and Atoweir (2014) Libya, Benghazi, Sidy Khalifa 2.57E-06 (0.31) – –

Libya, Benghazi, Garyounis 1.4E-05 (0.4) 8.57E-06 (1.03) – –
Fenta (2014) Ethiopia, Chafe 1.2E-03 (34.60) 3.11E-04 (37.52) – –

Ethiopia, Dato 6.2E-04 (17.30) 1.56E-04 (18.76) – –
Giri and Singh (2019) India, East of Singhbhum 2.6E-04 (7.4) – – 1.04E-03 (0.7)

India, West of Singhbhum 1.8E-04 (5.1) – – 5.3E-04 (0.4)
González-Montaña et al. (2012) Spain, Asturias 9.9E-06 (0.2) – – –
González-Montaña et al. (2019) Spain, Asturias – – – 4.62E-04 (0.33)
Iftikhar et al. (2014) Pakistan, Peshawar 9.4E-03 (262.2) 2.91E-03 (350.34) – –

Pakistan, Peshawar 8.8E-03 (243.5) 1.6E-04 (20.3) – –
Islam et al. (2015) Bangladesh, Bogra 5.4E-05 (1.5) 7.14E-06 (0.86) – –
Ismail et al. (2015) Pakistan, Multan 1.3E-04 (3.5) 1.26E-05 (1.5) – –

Pakistan, Multan 4.2E-05 (1.1) 4.21E-07 (0.05) – –
Ismail et al. (2017) Pakistan, Punjab 1.4E-04 (3.86) 1.69E-05 (2.03) – –
Jigam et al. (2011) Nigeria, Niger Dangana 1.2E-04 (3.3) – – –
Jolly et al. (2017) Bangladesh, Dhaka/Barishal 1.4E-05 (0.4) 7.1E-06 (0.8) 1.07E-05 (18.8) –
Kabir et al. (2017) Bangladesh, Karnafuli, Chittagong 3.2E-05 (0.9) 1.07E-04 (12.91) 2.1E-05 (37.5) –
Kim et al. (2016) Korea, South part 1.4E-07 (0.004) 2.86E-08 (0.003) – –
Król et al. (2012) Poland, Lublin 1.5E-05 (0.41) 1.03E-05 (1.24) – –

Poland, Bieszczady 1.2E-05 (0.3) 2.9E-06 (0.3) – –
Poland, Biebrza 8.8E-06 (0.2) 5.9E-06 (0.7) – –

Maas et al. (2011) France, Besançon 1.9E-04 (5.2) 1.5E-06 (0.19) – –
Malhat et al. (2012) Egypt, El-Qaliubiya 3.6E-03 (101.3) 2.3E-04 (27.9) – –
Meshref et al. (2014) Egypt, Beni-Suef 1.7E-04 (4.6) 4.1E-05 (5.0) – –
Muhib et al. (2016) Bangladesh, Dhaka 5.4E-06 (0.1) 7.14E-06 (0.86) – –

Bangladesh, Dhaka 4.3E-06 (0.1) 1.79E-05 (2.15) – –
Najarnezhad and Akbarabadi (2013) Iran, Khorasan 6.9E-06 (0.19) 2.06E-07 (0.02) 2.06E-06 (3.6) –
Najarnezhad et al. (2015) Iran, West Azerbaijan 4.80E-06 (0.1) 6.86E-07 (0.08) – –
Norouzirad et al. (2018) Iran, Khuzestan 3.4E-05 (0.9) 2.74E-06 (0.33) – –
Ogundiran et al. (2012) Nigeria, Ibadan 6.8E-05 (1.9) – – –
Pérez-Carrera et al. (2016) Argentina, Southeast of Córdoba 5.7E-04 (15.8) – – –
Pilarczyk et al. (2013) Poland, Lubuskie 4.4E-05 (1.2) 4.4E-06 (0.5) – –

Poland, Lubuskie 5.9E-05 (1.6) 5.9E-06 (0.7)
Qu et al. (2018) Chine, Inner Mongolia – 2.32E-06 (4.07) 1.62E-04 (0.1)

Chine, Heilongjiang 1.2E-05 (0.3) – 2.32E-06 (4.07) 8.81E-04 (0.6)
Raghu (2015) India, Tirupati 1.2E-01 (3428.6) 2.47E-02 (2974.2) – –

Rahimi (2013) Iran (Isfahan, Yazd, Mashhad,
Kerman, and Ahvaz cities)

6.2E-06 (0.17) 6.17E-07 (0.07) – –

Safaei et al. (2020) Iran, East Azerbaijan 6.9E-06 (0.2) 4.80E-06 (0.6) – –
Sarsembayeva et al. (2020) Kazakhstan, Almaty 1.00E-05 (0.2) 2.7E-05 (3.2) – –
Shahbazi et al. (2016) Iran (Ahvaz, Esfahan, Tehran,

Tabriz and Mashhad cities)
9.60E-06 (0.2) 6.86E-07 (0.08) – –

Tahir et al. (2017) Pakistan, Sargodha 3.4E-03 (93.6) 1.26E-03 (152.3) – –
Temiz and Soylu (2012) Turkey, south-east of Samsun 3E-04 (8.2) 5.93E-05 (7.1) – –
Tona et al. (2013) Nigeria, Ogbomoso 5.6E-07 (0.01) 3.71E-07 (0.04) – –
Zhou et al. (2017) Chine, Shandong and Shaanxi cities 1.6E-06 (0.05) 8.11E-08 (0.01) 5.79E-06 (10.1) 5.79E-05 (0.04)
Zhou et al. (2019) Chine, Tangshan 1.6E-06 (0.0) 1.16E-07 (0.01) – –

Chine, Qiqihar 1.9E-07 (0.01) 4.63E-08 (0.01) – –

(continued on next page)

9A. Boudebbouz et al. / Science of the Total Environment 751 (2021) 141830



Table 2 (continued)

Reference Location Pb Cd Hg Al

EDI (% TDI) EDI (% TDI) EDI (% TDI) EDI (% TDI)

Zodape et al. (2012) India, Mumbai 1.2E-02 (337.1) – 4.11E-05 (72.18) –
Zwierzchowski and Ametaj (2019) Canada, Alberta 1.7E-06 (0.05) 8.29E-07 (0.1) – 5.8E-05 (0.04)

PTDI values: Pb 0.0036 mg/kg BW/day; Hg 0.000057 mg/kg BW/day (for inorganic mercury); Cd 0.00083 mg/kg BW/day; Al 0.14 mg/kg BW/day.
–: no data available.

Table 3
Trace elements daily intake (mg/day) for for Ni, Fe and Cu through consumption of milk in comparison to RDAs values.

Reference Location Ni Cu Fe

DI (% RDA) DI (% RDA) DI (% RDA)

Abdalla et al. (2013) Sudan – 6.43E-04 (0.07) –
Ahmad et al. (2017) Pakistan, Pakhtunkhwa – 5.90E-04 (0.07) 2.95E-03 (0.01)
Akele et al. (2017) Ethiopia, North Gondar – 1.74E-03 (0.19) –
Akhtar et al. (2015) Pakistan, Multan 7.59E-04 (0.08) 6.32E-04 (0.07) 4.34E-03 (0.01)
Arianejad et al. (2015) Iran, Arak 2.74E-05 (0.003) – –

Iran, Arak 8.9E-05 (0.01) – –
Aslam et al. (2011) Pakistan, Faisalabad 9.9E-02 (9.9) – –
Bakircioglu et al. (2018) Turkey, Edirne – 1.54E-03 (0.17) 2.19E-02 (0.05)
Belete et al. (2014) Ethiopia, Borena Zone – 1.87E-04 (0.02) –
Bigucu et al. (2016) Turkey, Şakirbey – 3.68E-03 (0.41) 2.49E-02 (0.06)

Turkey, Yeniçiftlik – 3.85E-03 (0.43) 1.54E-02 (0.03)
Turkey, Gümüşçay – 3.85E-03 (0.43) 2.40E-02 (0.05)

Bilandžić et al. (2011) Croatia, Northern – 4.13E-03 (0.46) –
Croatia, Southern – 3.73E-03 (0.41) –

Bousbia et al. (2019) Algeria, Guelma – 9.42E-04 (0.10) 5.64E-03 (0.01)
Cadar et al. (2015) Romania, Eastern Carpathians – 3.73E-04 (0.04) –
Capcarova et al. (2019) Slovak, Nitra region 1.42E-03 (0.14) 3.57E-03 (0.4) 2.97E-03 (0.01)
Castro-Gonzalez and Calderon-Sanchez (2018) Mexico, Puebla 2.9E-05 (0.003) 2.91E-05 (0.003) –
El Sayed et al. (2011) Egypt, Menofia – 9.94E-04 (0.11) 4.23E-03 (0.01)
Elsaim and Ali (2018) Sudan, Merowe – 1.04E-03 (0.12) –
Fenta (2014) Ethiopia, Chafe 2.49E-03 (0.2) – –

Ethiopia, Dato 2.18E-03 (0.2) – –
Giri and Singh (2019) India, East of Singhbhum 1.28E-03 (0.13) 1.03E-03 (0.11) 1.81E-02 (0.04)

India, West of Singhbhum 4.11E-04 (0.04) 6.38E-04 (0.07) 2.35E-02 (0.05)
Giri et al. (2011) India, Jharkhand 8.23E-04 (0.08) 1.23E-03 (0.14) 1.01E-02 (0.02)
Iftikhar et al. (2014) Pakistan, Peshawar 3.37E-03 (0.34) 5.90E-03 (0.66) –

Pakistan, Peshawar 8.43E-05 (0.01) 3.79E-04 (0.04) –
Islam et al. (2015) Bangladesh, Bogra 4.64E-04 (0.05) 8.21E-04 (0.09) –
Ismail et al. (2015) Pakistan, Multan 1.26E-04 (0.01) 4.89E-03 (0.54) –

Pakistan, Multan 1.26E-04 (0.01) 3.50E-03 (0.39) –
Ismail et al. (2017) Pakistan, Punjab 3.50E-04 (0.03) 1.69E-04 (0.02) –
Jigam et al. (2011) Nigeria, Niger Dangana – 1.19E-04 (0.01) –
Jolly et al. (2017) Bangladesh, Dhaka/Barishal 2.86E-05 (0.003) 2.14E-05 (0.002) 4.39E-04 (0.001)
Kabir et al. (2017) Bangladesh, Karnafuli, Chittagong 3.93E-05 (0.004) 4.29E-05 (0.005) 2.73E-03 (0.01)
Król et al. (2012) Poland, Lublin – 5.89E-05 (0.01) 3.68E-04 (0.001)

Poland, Bieszczady – 5.89E-05 (0.01) 5.44E-04 (0.001)
Poland, Biebrza – 1.03E-04 (0.01) 4.86E-04 (0.001)

Maas et al. (2011) France, Besançon – 2.69E-03 (0.3) –
Malhat et al. (2012) Egypt, El-Qaliubiya – 2.40E-03 (0.26) 1.63E-02 (0.03)
Meshref et al. (2014) Egypt, Beni-Suef – 7.46E-05 (0.01) 7.37E-03 (0.02)
Muhib et al. (2016) Bangladesh, Dhaka – 2.14E-05 (0.002) 1.18E-04 (0.0003)

Bangladesh, Dhaka – 4.29E-05 (0.005) 2.25E-04 (0.001)
Ogundiran et al. (2012) Nigeria, Ibadan – 5.80E-03 (0.64) –

Nigeria, Ibadan – 3.57E-05 (0.004) –
Pérez-Carrera et al. (2016) Argentina, Southeast of Córdoba 1.14E-04 (0.01) 8.53E-05 (0.01) 2.73E-03 (0.01)
Pilarczyk et al. (2013) Poland, Lubuskie – 4.41E-05 (0.005) 3.68E-04 (0.001)

Poland, Lubuskie 8.9E-05 (0.01) 2.9E-04 (0.001)
Qu et al. (2018) Chine, Heilongjiang 1.16E-05 (0.001) – –
Raghu (2015) India, Tirupati 1.71E+00 (171.3) 7.41E-02 (8.23) –

India, Mangampeta 1.38E-01 (13.8) 5.76E-02 (6.4) –
Rao and Murthy (2017) Tanzania, Dodoma, Ntyuka – 2.29E-04 (0.03) –
Shahbazi et al. (2016) Iran, Ahvaz, Esfahan, Tehran, Tabriz and Mashhad cities – 2.88E-04 (0.03) –
Tahir et al. (2017) Pakistan, Sargodha 1.2E-02 (1.2) – –
Temiz and Soylu (2012) Turkey, south-east of Samsun 3.8E-03 (0.38) 9.66E-03 (1.07) 2.79E-03 (0.01)
Zain et al. (2016) Iran, South – 6.38E-04 (0.07) 9.12E-04 (0.002)

Iran, North – 5.69E-04 (0.06) 9.87E-04 (0.002)
Malaysia, Peninsula – 2.03E-04 (0.02) 3.76E-04 (0.001)
Malaysia, Peninsula – 2.04E-04 (0.02) 7.20E-04 (0.002)

Zhou et al. (2017) Chine, Shandong and Shaanxi cities 6.67E-06 (8.52) 3.48E-05 (0.004) 4.06E-04 (0.001)
Zodape et al. (2012) India, Mumbai – 7.67E-02 (8.52) –
Zwierzchowski and Ametaj (2019) Canada, Alberta – 8.29E-05 (0.01) 4.14E-04 (0.001)

RDA* (Recommended Dietary Allowances) Ni 1 mg/day; Fe 45 mg/day; Cu 0.9 mg/day. –: no data available.
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Table 4
Target hazard quotient (THQ) values for heavy metals (Pb, Cd, Ni, Hg, Fe, Cu, Al) in raw cow's milk reported in research articles published since 2010.

Reference Location THQ

Pb Cd Ni Hg Fe Cu Al

Abdalla et al. (2013) Sudan 7.4E-01 3.11E-03 – – – 1.61E-02 –
Ahmad et al. (2017) Pakistan, Pakhtunkhwa – 3.37E-01 – – 4.21E-03 1.48E-02 –
Akele et al. (2017) Ethiopia, North Gondar 6.7E-02 4.52E-01 – – – 4.36E-02 –
Akhtar et al. (2015) Pakistan, Multan 2.4E-01 4.21E-01 3.79E-02 – 6.20E-03 1.58E-02 –
Arianejad et al. (2015) Iran, Arak – – 1.37E-03 2.29E-04 – – –

Iran, Arak – – 4.46E-03 2.06E-04 – – –
Aslam et al. (2011) Pakistan, Faisalabad 2.80E+01 1.16E-01 4.95E+00 7.73E+00 – – –
Bakircioglu et al. (2018) Turkey, Edirne – – – – 3.13E-02 3.85E-02 1.78E-03
Belete et al. (2014) Ethiopia, Borena Zone – – – – – 4.67E-03 –
Bigucu et al. (2016) Turkey, Şakirbey 3.1E+00 2.31E+00 – – 3.56E-02 9.19E-02 1.03E-01

Turkey, Yeniçiftlik 1.7E+00 1.13E+00 – – 2.20E-02 9.63E-02 1.16E-01
Turkey, Gümüşçay 1.7E+00 1.13E+00 – – 3.43E-02 9.63E-02 1.33E-01

Bilandžić et al. (2011) Croatia, Northern 7.6E-02 4.44E-02 – 1.48E-02 – 1.03E-01 –
Croatia, Southern 3.8E-02 1.33E-03 – 1.04E-01 – 9.33E-02 –

Bilandžić et al. (2016) Croatia 1.3E-02 – – 1.04E-01 – – –
Bousbia et al. (2019) Algeria, Guelma – 1.18E-01 – – 8.05E-03 2.36E-02 –
Cadar et al. (2015) Romania, Eastern Carpathians 1.4E-02 7.93E-03 – 2.64E-02 – 9.32E-03 –
Capcarova et al. (2019) Slovak, Nitra region 1.8E+00 4.55E-01 7.08E-02 – 4.24E-03 8.93E-02 –
Castro-Gonzalez and Calderon-Sanchez (2018) Mexico, Puebla 2.50E-02 – 1.46E-03 – – 7.29E-04 –
Chirinos-Peinado and Castro-Bedriñana (2020) India, Peru 3.41E-01 4.11E-02 – – – – –
Derakhshesh and Rahimi (2012) Iran, Tehran 3.9E-03 – – – – – –

Iran, Yasuj 9.8E-04 – – – – – –
Dizaji et al. (2012) Iran, East Azerbaijan 2.0E-03 4.11E-04 – – – – –
El Sayed et al. (2011) Egypt, Menofia 1.45E-01 1.66E-02 – – 6.04E-03 2.49E-02 –
Elatrash and Atoweir (2014) Libya, Benghazi, Sidy Khalifa – 2.57E-03 – – – – –

Libya, Benghazi, Garyounis 4.1E-03 5.71E-03 – – – – –
Elsaim and Ali (2018) Sudan, Merowe – – – – – 2.59E-02 –
Fenta (2014) Ethiopia, Chafe 3.6E-01 3.11E-01 1.25E-01 – – – –

Ethiopia, Dato 1.8E-01 1.56E-01 1.09E-01 – – – –
Giri and Singh (2019) India, East of Singhbhum 7.6E-02 – 6.38E-02 – 2.59E-02 2.57E-02 1.03E-03

India, West of Singhbhum 5.3E-02 – 2.06E-02 – 3.35E-02 1.60E-02 5.35E-04
Giri et al. (2011) India, Jharkhand – – 4.11E-02 – 1.44E-02 3.09E-02 –
González-Montaña et al. (2012) Spain, Asturias 2.8E-03 – – – – – –
González-Montaña et al. (2019) Spain, Asturias – – – – – – 4.62E-04
Iftikhar et al. (2014) Pakistan, Peshawar 2.7E+00 2.91E+00 1.69E-01 – – 1.48E-01 –

Pakistan, Peshawar 2.5E+00 1.69E-01 4.21E-03 – – 9.48E-03 –
Islam et al. (2015) Bangladesh, Bogra 1.5E-02 7.14E-03 – – – 2.05E-02 –
Ismail et al. (2015) Pakistan, Multan 3.6E-02 1.26E-02 6.32E-03 – – – –

Pakistan, Multan 1.2E-02 4.21E-03 6.32E-03 – – – –
Ismail et al. (2017) Pakistan, Punjab 4.0E-02 1.69E-02 1.75E-02 – – 4.21E-03 –
Jigam et al. (2011) Nigeria, Niger Dangana 3.4E-02 – – – – 2.98E-03 –
Jolly et al. (2017) Bangladesh, Dhaka/Barishal 4.1E-03 7.14E-03 1.43E-03 3.57E-02 6.28E-04 5.36E-04 –
Kabir et al. (2017) Bangladesh, Karnafuli, Chittagong 9.2E-03 1.07E-01 1.96E-02 7.14E-02 3.9E-03 1.07E-03 –
Kim et al. (2016) Korea, South part 4.1E-05 2.86E-05 – – – – –
Król et al. (2012) Poland, Lublin 4.2E-03 1.03E-02 – – 5.26E-04 1.47E-03 –

Poland, Bieszczady 3.4E-03 2.94E-03 – – 7.78E-04 1.47E-03 –
Poland, Biebrza 2.5E-03 5.89E-03 – – 6.94E-04 2.58E-03 –

Maas et al. (2011) France, Besançon 5.4E-02 1.57E-03 – – – 6.72E-02 –
Malhat et al. (2012) Egypt, El-Qaliubiya 1.E+00 3.32E-01 – – 1.50E-02 6.01E-02 –
Meshref et al. (2014) Egypt, Beni-Suef 4.7E-02 4.41E-02 – – 1.05E-02 1.86E-03 –
Muhib et al. (2016) Bangladesh, Dhaka 1.5E-03 7.14E-03 – – 1.68E-04 5.36E-04 –

Bangladesh, Dhaka 1.2E-03 1.79E-02 – – 3.21E-04 1.07E-03 –
Najarnezhad and Akbarabadi (2013) Iran, Khorasan 2.E-03 2.06E-04 – 6.86E-03 – – –
Najarnezhad et al. (2015) Iran, West Azerbaijan 1.4E-03 6.86E-04 – – – – –
Norouzirad et al. (2018) Iran, Khuzestan 9.8E-03 2.74E-03 – – – – –
Ogundiran et al. (2012) Nigeria, Ibadan – – – – – 1.45E-01 –

Nigeria, Ibadan 2E-02 – – – – 8.94E-04 –
Pérez-Carrera et al. (2016) Argentina, Southeast of Córdoba 1.6E-01 – 5.69E-03 – 3.9E-03 2.13E-03 –
Pilarczyk et al. (2013) Poland, Lubuskie 1.3E-02 4.41E-03 – – 5.26E-04 1.10E-03 –

Poland, Lubuskie 1.7E-02 5.9E-03 – – 4.2E-04 1.4E-03
Qu et al. (2018) Chine, Inner Mongolia – – – 7.72E-03 – – 1.62E-04

Chine, Heilongjiang 3.3E-03 – 5.79E-04 7.72E-03 – – 8.81E-04
Raghu (2015) India, Tirupati 3.53E+01 2.47E+01 8.57E+01 – – 1.85E+00 –

India, Mangampeta – – 6.89E+00 – – 1.44E+00 –
Rahimi (2013) Iran (Isfahan, Yazd, Mashhad,

Kerman, and Ahvaz cities)
1.8E-03 6.17E-04 – – – – –

Rao and Murthy (2017) Tanzania, Dodoma, Ntyuka – – – – – 5.71E-03 –
Safaei et al. (2020) Iran, East Azerbaijan 2.0E-03 4.80E-03 – – – – –
Sarsembayeva et al. (2020) Kazakhstan, Almaty 2.9E-03 2.7E-02 – – – – –
Shahbazi et al. (2016) Iran (Ahvaz, Esfahan, Tehran,

Tabriz and Mashhad cities)
2.7E-03 6.86E-04 – – – 7.20E-03 –

Tahir et al. (2017) Pakistan, Sargodha 9.6E-01 1.26E+00 6.01E-01 – – – –
Temiz and Soylu (2012) Turkey, south-east of Samsun 8.5E-02 5.93E-02 1.90E-01 – 3.98E-03 2.42E-01 –

(continued on next page)
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Table 4 (continued)

Reference Location THQ

Pb Cd Ni Hg Fe Cu Al

Tona et al. (2013) Nigeria, Ogbomoso 1.6E-04 3.71E-04 – – – – –
Zain et al. (2016) Iran, South – – – – 1.30E-03 1.59E-02 –

Iran, North – – – – 1.41E-03 1.42E-02 –
Malaysia, Peninsula – – – – 5.37E-04 5.07E-03 –
Malaysia, Peninsula – – – – 1.03E-03 5.11E-03 –

Zhou et al. (2017) Chine, Shandong and Shaanxi
cities

4.6E-04 8.11E-05 3.30E-04 1.93E-02 5.79E-04 8.69E-04 5.79E-05

Zhou et al. (2019) Chine, Tangshan 4.6E-04 1.16E-04 – – – – –
Chine, Qiqihar 5.30E-05 4.63E-05 – – – – –

Zodape et al. (2012) India, Mumbai – – – 1.37E-01 – 1.92E+00 –
Zwierzchowski and Ametaj (2019) Canada, Alberta 4.7E-04 8.29E-04 – – 5.92E-04 2.07E-03 5.8E-05

–: no data available.
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values ranged from 0 to 0.123 (mg/kg BW/day) which represent
0–3428.57% of PTDI. It should be noted that mean Pb uptake by milk
consumption in 10 regions (14.28%) out of 70 across the globe were ex-
tremely high, the EDI values were exceeding 100% of PTDI. In 27
(38.57%) regions, and the values were between 1% to 93% of PTDI. In
33 regions (47.14%) were representing values <1% of PTDI. The average
consumption of Pb throughmilk reaches its maximum inmilk collected
in India, and Pakistan, the values were 3428.57%, and 2715.87% of PTDI
respectively (Table 2).

For Cd, the provisional tolerable monthly intake (PTMI) given by
Joint FAO/WHO Expert Committee on Food Additives is 25 μg/kg BW
(equivalent to 0.83 μg/kg BW/day) (FAO/WHO, 2012). The exposure of
Cd through raw cow milk consumption across the globe ranged be-
tween 0 and 0.024 (mg/kg BW/day) which represented the values
ranged from 0 to 2974.18% of PTDI. The average consumption of Cd
through milk collected in Mangampeta, China covers maximum
2974.18% of PTDI. The average Cd consumption exceed 100% of PTDI
in 6 regions (10%) across the globe, while the values ranged between
1% and 86.32% of PTDI in 22 regions (37%), finally the EDI in milk col-
lected in 31 regions which represent half of the analyzed milk across
the globe exceeded 1% of PTDI (Table 2).

Regarding Hg, a recommended PTWI of 1.6 μg/kg have been set by
the 67th JECFA in 2003 formethylmercury (FAO/WHO, 2010), the aver-
age of Hg consumption through milk ranged between 0 and 0.0023
(mg/kg BW/day) which represent 0 to 4066.42% of PTDI. The average
consumption of Hg in raw cow milk collected from Faisalabad,
Pakistan covers maximum 4066.42% of PTDI, followed by the milk of
Mumbai, India with represent 72.18% of PTDI (Table 2).

The 67 and JECFA has set a PTWI of 1 mg/kg BW/day (equivalent to
0.14 mg/kg BW/day) for Al (FAO/WHO, 2006). The EDI of Al through
consumption of raw cow milk was ranged from 5.79E-05 to
1.33 × 10−1 (mg/kg BW/day) which represent 0.046% to 95.28% of
PTDI. The highest EDI 1.33 × 10−1 (mg/kg BW/day) was recorded in
milk collected in Turkey (Table 2).

4.2. Non-carcinogenic risk assessment

The non-carcinogenic risk of Pb, Cd, Hg, Ni, Fe, Cu, and Al for themilk
consumerswas determined by calculating THQ (target hazard quotient)
value. THQ of these metals for adults was calculated based on the mean
levels of thesemetals that obtained from the current review (Table 4). It
must be noted that if THQ of metals is <1 non obvious risks are improb-
able tohappen to the exposed population.Harmful impactsmay happen
to exposed population if THQ is >1 (Dadar et al., 2017; Rahmani et al.,
2018).

The results of THQ values indicated that milk consumers in ten re-
gions out of 70 in the globe during the last decade 2010–2020 were ex-
posed to some potential health risk through the intake of Pb.

The highest value of THQ for Pb was estimated to be 3.53 E+01 in
raw milk collected in Tirupati province, India. THQ values >1 (2.70E
+00, 2.5E+00) in milk collected in Peshawar province, Pakistan. A
health effect (THQ values >1) were observed in Turkey in raw cow
milk collected in Şakirbey province, in Yeniçiftlik province, and in
Gümüşçay province, the values were 3.1E+00, 1.7E+00 and 1.7E+00
respectively. Also THQ of Pb was more than one (2.8E+01) in milk col-
lected from Faisalabad city, Pakistan, (1.8E+00) in milk collected in
Nitra region, Slovak, (1.4E+00) in Industrial air pollution area of Tokh
city, El-Qaliubiya governance, Egypt, and (3.5E+00) in milk collected
in Mumbai region, India.

Regarding to Table 4, the THQ of Cd in six regions out of 59 that an-
alyzed heavy metals in raw cowmilk exceeded one indicating a greater
risk for consumers. The highest THQ value of Cd was 2.47E+01 re-
corded in raw milk of Tirupati province (India). In turkey, THQ values
were 2.31E+00, 1.13E+00, and 1.13E+00 recorded in milk collected
in Sakirbey province, Yeniçiftlik province, and Gümüşçay province re-
spectively. Also in Pakistan, THQ values (2.91E+00, 1.26E+00) were
higher than 1 in rawmilk collected in Peshawar province, and Sargodha
province, respectively.

In the case of Cu, it was observed that THQ values were more than
one only in three regions out of 54 regions around the world. The
highest values (1.92E+00, 1.85E+00 and 1.44E+00) were recorded
in India from Mumbai region, Turipati province, and Magampeta prov-
ince respectively.

For Ni, THQ values exceeded 1 in three regions out of 29 regions in
the world. The THQ values were 8.57E+01, 6.89E+00, and 4.95E+00
in raw milk of Tirupati province, and Mangampeta province, India, and
in raw milk of Faisalabad region, Pakistan.

Hg THQ values are of concern (THQ values = 7.73E+00; Table 4)
only for raw cow milk collected in Faisalabad province, Pakistan.

The results of non-carcinogenic risks from exposure to metals
through milk consumption indicates that raw cow milk collected in all
sites during the last decade was safe for human consumption in terms
of the amounts of Al and Fe (THQ values <1; Table 4).
5. Conclusion

Milk is an important food source, it is rich in macro- and
micronutrients which play an important role in health preservation; it
impacts positively nutrient and energy intakes. However, heavy metals
can counterbalance these benefits, and affect human health.

This systematic review covers 60 studies that assessed Pb, Cd, Hg, Ni,
Fe, Cu, and Al levels in raw cowmilk samples collected worldwide. The
highest mean levels of Pb, Ni, Cu, Cd, and Fe in raw cow milk were re-
ported in India while the highest values of Al, and Hg were recorded
in Turkey and Pakistan respectively. The concentrations of Fe and Cu
in raw cow milk collected worldwide were higher than the maximum
limit recommended by the US Food and Nutrition Board. In the same
way, according to our data, the overall concentration of Pb and Cd in
cow milk was generally higher in developing countries and lower in
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developed countries, reflecting less strict regulation in developing
countries.

The exposure assessment indicates that the exposure to Al and Fe
through milk consumption were safe for human consumption. The
THQ values of Hg were below 1 suggesting that milk consumers are
not at non-carcinogenic risk except in Faisalabad province, Pakistan
where THQ values = 7.7. However, the THQ values were >1 for Pb
(10 regions out of 70), for Cd (6 regions out of 59), for Ni (3 out of
29), and for Cu (3 out of 54).

Data recorded in this systematic review show thedifficulty to under-
stand the multifaceted aspect of food security related to cow milk con-
sumption. Moreover, data actualization and continuous monitoring
are necessary and recommended to evaluate the potential adverse ef-
fects of heavy metals on human and animal health in future studies.
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b Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria 
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e Research Institute of Animal Science, HAO-Demeter, GR, Giannitsa 58100, Greece   

A R T I C L E  I N F O   

Keywords: 
Acceptable daily intakes 
Contamination level 
Health risk assessment 
Pesticide residues 
Raw cow’s milk 

A B S T R A C T   

Milk is a widely consumed food rich in macro- and micronutrients that play an important role in health pres-
ervation. While it affects positively human nutrient and energy uptake, the presence of pesticide residues could, 
however, counterbalance these benefits and negatively affect human health. This systematic review provides an 
overview of studies on pesticide residues during the last decade and the related human health risk assessment. 
Thirty-five original articles published since 2010 reporting the levels of pesticide residues in raw cow’s milk in 69 
regions from 15 countries were reviewed. Data showed that pesticide residue levels were ranked as, DDTs>
permethrin> bifenthrin> Drins> endrin> endosulfan> HCHs> cyhalothrin> cypermethrin> heptachlor>
ethion> coumaphos> deltamethrin> dimethoate, chlorpyriphos> profenofos> malathion> dichlorvos> para-
thion methyl> carbaryl> aldicarb> carbofuran> methamidophos. High geographic variation was observed, and 
many regions appear as contaminated zones with high risks such as Punjab in Pakistan (× 3080 > MRL and ×
113 > MRL for Cypermethrin and Drins, respectively), Sand Pedro in Columbia (× 1090 > MRL and × 200 >
MRL for endrin and Drins, respectively), and Gezira State in Sudan (× 109 > MRL DDTs). The risk assessment for 
humans indicated that HQ Drins values were > 1 in Columbia (Sucre, Casa Azul, San Pedro, Costanera, Sabanas, 
Sinú Medio, and San Jorge regions), and in Pakistan (Punjab region). Moreover, the HQ values for endrin were >
1 in Sinú Medio (Colombia) and for heptachlor in Costanera region, Sinú Medio, and Sabanas (Colombia). 
Furthermore, HI values were > 1 in seven regions in Colombia, 1 region in Pakistan, 1 region in Egypt and 1 
region in Turkey, suggesting a serious health risk. In conclusion, to avoid cow’s milk contamination by pesticides, 
it is necessary to develop eco-friendly alternatives to chemical pesticides and promote integrated pest man-
agement (IPM) strategies.   

1. Introduction 

In order to deal with the effects of globalization, urbanization, 
mechanization, overpopulation, global warming, and climate change, it 
is of grave importance to improve the sustainability of agriculture and 
the food producing systems so that they can be profitable while at the 

same time they safeguard the natural resources for future generations 
(Boudalia et al., 2020; Bousbia et al., 2021; Martin et al., 2020; Wain-
wright et al., 2019). Commonly, conventional agriculture uses chemical 
inputs, such as pesticides, which are generalised across the globe, with 
several advantages including increasing crop yield and an effective fight 
against diseases and pests (Benada et al., 2021; Galani et al., 2020). 
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odiphenyldichloroethane; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; EDI, estimated daily intake; EU, European Commission; 
FAO, food and agriculture organization; HCH, hexachlorocychlohexane; HI, hazard index; HQ, hazard quotient; MRL, maximum residue level; OC, organochlorine 
pesticides; OHPs, organohalogenated pollutants; OP, prganophosphorus pesticides; PTDI, provisional tolerable daily intake; PY, pyrethroid pesticides; WHO, World 
Health Organization. 
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However, besides their benefits, several negative impacts of their use 
have been recorded, such as their undesirable adverse effects on 
non-target organisms and human health as well as negative environ-
mental effects (Simeonov et al., 2014). 

The consumption of milk and its derivatives belongs to the most 
ancient eating practices (Leksir et al., 2019) since these products are 
considered as the most balanced food ever found in nature, containing 
major sources of nutrients, especially for children, adults, and the 
elderly people (Nag, 2010). They are consumed by people worldwide 
due to their nutritive qualities (Boukria et al., 2020), mainly their 
contribution as the main source of calcium, but also for their macro- and 
micronutrients such as proteins, lipids (poly-unsaturated fatty acids), 
carbohydrates, essential amino acids, vitamins, and several bioactive 
compounds important for biochemical and physiological functions 
(Boudalia et al., 2016; Pereira, 2014). 

Data from previous studies have shown that worldwide milk 
contamination with emerging contaminants such as heavy metals and 
pesticide residues originates mainly through animal consumption of 
contaminated water, feed, and grass or corn silage (Boudebbouz et al., 
2022, 2021; Bousbia et al., 2019; Gill et al., 2020). Most pesticide res-
idues are fat-soluble in milk and can affect human health at low doses 
(El-Saeid et al., 2021), even though they are considered as not harmful 
by health authorities (Aiassa et al., 2019). Some pesticides and their 
residues can interact with the endocrine system and can act as endocrine 
disruptors through non-monotonic dose-response relationships (Aux-
ietre et al., 2014; Boudalia et al., 2017). Consequently, humans are 
exposed to diverse mixtures that amplify the effects, especially, for the 
vulnerable population such as infants and young children under 3 years 
of age. This specific age group is more sensitive to several pesticides due 
to their high intake of milk and dairy products in relation to their body 
weight and to the immaturity of their defence systems against chemical 
stressors (Nougadère et al., 2020; Simeonov et al., 2014). 

Synthetic pesticides are classified into four major classes, namely 
organochlorine pesticides (OC), organophosphorus pesticides (OP), 
carbamate pesticides (CB), and pyrethroid pesticides (PY). Organo-
chlorine pesticides were usually used as insecticides, herbicides and 
fungicides against a broad range of insects, and fungi in the agriculture 
sector (Abubakar et al., 2020). They have been detected in milk, and 
dairy products over the past three decades, particularly in the form of 
Dichlorodiphenyltrichloroethane (DDTs) and Hexachlorocychlohexane 
(HCHs) (Nag, 2010). Organophosphorus pesticides have been used 
increasingly in agriculture after banning or restricting organochlorine in 
use. Organophosphorus pesticides including malathion, dimethoate, 
chlorpyriphos, profenofos, coumaphos, dichlorvos, methamidophos, 
ethion, parathion methyl are highly toxic to mammals and are consid-
ered as mutagens, carcinogens, and teratogens substances (Needham 
et al., 2005; Sun et al., 2020; Wainwright et al., 2019). Carbamates are 
organic pesticides that include carbaryl, carbofuran, and aldicarb. They 
are similar to organophosphorus in terms of structure, however, their 
degradation is easy in the natural environment (Bhatt et al., 2021). 
Synthetic-pyrethroid including permethrin, cypermethrin, deltameth-
rin, cyhalothrin and bifenthrin can affect brain dopaminergic and 
serotonergic systems and provoke neurobehavioral changes in Wistar 
rats (Ansari et al., 2012). They can also affect learning, memory-related 
characteristics, and reduce the homing ability of Apis mellifera bee (Liao 
et al., 2018), or inhibit the acetylcholinesterase at the synaptic junction 
of the fish Odontesthes bonariensis, which provoke lethal effects (López 
Aca et al., 2018). 

European Commission (2005) has established Maximum Residue 
Levels (MRL) as a measure to evaluate the maximum residue levels of 
pesticides in or on food and feed of plant and animal origin. The MRLs 
for milk and dairy products is ranged between 0.8 and 2000 μg/kg for 
the EU (European Commission, 2019), or range between 0.4 and 1000 
μg/kg according to FAO and WHO (FAO/WHO, 2018). Moreover, a 
specific regulation for food consumed by children, and infants have been 
established by the European Commission (2013) to restrict the use of 

pesticides in infant formulas as much as possible. 
In developing countries the situation is different, and governments 

claim that they cannot ban certain chemicals easily for several reasons 
such as difficulty to control, low cost and efficacy. Consequently, most of 
these chemicals have been or continue to be used in large quantities in 
many developing countries across the globe (Ecobichon, 2001; Ullah 
et al., 2010). Moreover, developing countries use 20% of total pesticides 
produced worldwide, while developed countries use more than 80%. 
Nonetheless, the fatality rate in developing countries is 13 times greater 
due to incorrect or indiscriminate pesticide application (Ansari et al., 
2021), no standards in the application of pesticides and also farmers’ 
lack of pesticide expertise and training (Udimal et al., 2022). Competent 
authorities of food safety and their related laboratory structures are 
poorly equipped, and despite the existing regulatory move, there is still a 
large gap between current international scientific knowledge and local 
laws and policies addressing pesticide use (Mahdavi, 2010). Further-
more, they do not have the required infrastructure to properly eliminate 
pesticides from the environment (Parra-Arroyo et al., 2022). 

The objective of this systematic review is to compare the levels of 
synthetic pesticide residues including organochlorine (OC), organo-
phosphorus (OP), carbamate (CB), and pyrethroid (PY) in raw cow’s 
milk samples recorded in different countries in the last decade (2010- 
2021). Moreover, contamination sources and regulations are also dis-
cussed. Finally, estimated daily intake (EDI), hazard quotient (HQ), and 
hazard index (HI) analyses of pesticide residues from consuming raw 
cow’s milk are performed using data extracted for pesticide residues 
levels recorded from different areas across the globe. 

2. Materials and methods 

2.1. Method of literature search 

As shown in Fig. 2, publications search and selected articles were 
conducted according to Preferred Reporting Items for Systematic Re-
views and Meta-Analysis (PRISMA) guidelines (Moher et al., 2015). A 
systematic search of the published research articles between 2012 and 
2021 regarding pesticide residue identification and evaluation in raw 
cow’s milk samples across the globe was performed using three different 
scientific databases i.e., Science Direct, Scopus and PubMed. During the 
identification phase, several keywords and their synonyms, related 
terms and variations were used. The keywords were “raw milk” “cow 
milk”, “bovine milk”, “pesticide”, “pesticides”, “Organochlorine”, 
“Organophosphorus”, “Pyrethroids”, “Carbamate” combined with “OR” 
and/or “AND”. The Endnote X software (version 5, Thomson ISI 
ResearchSoft, Philadelphia, USA) was used to import found references. 
Moreover, the references section of imported articles was checked to 
retrieve other related studies even in other databases such as Google 
Scholar. Duplicate articles were deleted, and the only articles with 
further details were kept. 

2.2. Relevant screening, inclusion and exclusion criteria 

The review was conducted independently by two researchers (AB 
and SB). With respect to the source of the publication, no limit was 
applied. An initial screening by reading the title and abstract of the ar-
ticles was carried out, to ensure they were eligible for inclusion. After 
that, the full text of the retrieved articles was downloaded. 

To be included in the analysis, studies had to meet these criteria: 
(1) availability of full-text in the English language; (2) detection and 

monitoring of pesticide levels in raw cow milk samples across the globe; 
(3) preparation and instrumental analysis using analytical methods (GC- 
MS, GC-ECD, GC-MS/MS, HPLC UV and PAD and LC-MS...) should be 
detailed; (4) the process of quality control, insurance and validation 
should be included in the analysis. 

In addition, the following categories of research articles were 
excluded: (1) articles published before 2010; (2) articles that developed 
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and validated analytical methods to determine pesticide residues levels 
without random raw cow’s milk sample testing; (3) articles that recor-
ded the occurrence of pesticide residues in milk other than raw cow’s 
milk e.g. breast milk, sheep milk, camel milk, goat milk and buffalo milk; 
(4) articles that included processed milk, which designates raw cow’s 
milk that has undergone several steps through various processes such as 
homogenization, sterilization or pasteurization, cream separation 
(whole milk, semi-skimmed milk or skimmed milk), packaging, etc.; (5) 
studies concerning pesticide residues evaluation in other foods matrices 
such as meat, fruits, vegetables, nuts, cotton, seed products; (6) articles 
that were not peer-reviewed and not published in English language; (7) 
studies concerning contamination of cow’s milk by other residues such 
as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls 
(PCBs), hexabromocyclododecanes (HBCDs); and finally 8) included 
reviews, opinion pieces, conference proceedings, book chapters, con-
ference abstracts and letters to the editor. 

The selected articles were thoroughly reviewed, and the required 
information that was extracted was as follows: first author, year of study, 
provincial and the geographical location (longitude and latitude), 
sample size, pesticide residues level (recorded as mean concentration ±
standard deviation (SD) and/or range (Min-Max) and positive occur-
rence frequencies (%). Moreover, all units of concentration of pesticide 
residues μg/L, ppb, and ng/g were converted to ng/L to obtain homo-
geneous data. 

2.3. Bump graph analysis 

To better visualize the subjects covered by the screened published 
research articles, keywords were extracted from each article using a 
software platform, with an online interface: CorTexT Manager (http://m 
anager.cortext.net/). Moreover, according to Testoni et al. (2021) pro-
cedure, an Epic Epoch script was performed to follow the temporal 
evolution of these keywords over the years from 2010 to 2021. 

2.4. Human risk assessment and exposure to pesticide residues 

The average concentrations of pesticide residues are presented on the 
scale of mg/kg, ppm, µg/mL.µg/g was multiplied by 1000 to convert it to 
the scale of ng/g while the concentration presented on the scale of µg/L, 
µg/kg, and ppb was considered equal to the scale of ng/g. 

In order to calculate the estimated daily intake (EDI), hazard quo-
tient (HQ), and hazard index (HI), when articles presented data as a 
range, maximum values were used, and values reported as non-detected 
(ND) or below the limit of detection (LOD) were treated as zero (Martin 
et al., 2020). 

2.4.1. Estimated daily intake 
Estimated Daily Intake (EDI, in ng/kg BW per day) of pesticide res-

idues by consumption of raw cow’s milk was calculated to assess long- 
term dietary intake using Eq.01 (Boudebbouz et al., 2021). 

EDI=
(C pesticide × W milk)

Body Weight
(1)  

Where: 
C pesticide (ng/g, on a wet weight basis) is the mean pesticide level 

of raw cow’s milk samples. 
W Milk represents the daily average consumption of milk (g). 
Body weight (BW): average body weight of an adult was considered 

as 60 kg (WHO, 1997). 
The occurrence of each contaminant in raw cow’s milk samples was 

compared with MRL obtained from the pesticide database set by the 
Codex Alimentarius Commission (2020). The average consumption of 
milk for each country was obtained from the FAO-data base (FAO, 
2013). 

In order to estimate the human risk from raw cow’s milk 

consumption, the EDI was compared with Provisional Tolerable Daily 
Intake (PTDI), or Acceptable daily intake (ADI) obtained from the 
pesticide database set by the Codex Alimentarius Commission (2020). 
The database includes DDTs (op-DDE, pp-DDE, op-DDD, pp-DDD, 
op-DDT, pp-DDT), endosulfan (endosulfan sulfate, α endosulfan, β 
endosulfan), ΣHCH (α HCH, β HCH, γ HCH, δ HCH), heptachlor (hep-
tachlor, heptachlor epoxide), Drins (aldrin, dieldrin), endrin, Organo-
phosphorus pesticides, pyrethroid pesticides, and carbamate pesticides. 
Values exceeding the PTDI or ADI limit were considered not safe for 
consumers. 

2.4.2. Hazard quotients 
The long-term risk exposure of each pesticide residue was performed 

using the Hazard Quotient (HQ). According to Equation Eq. (02) (Galani 
et al., 2020; US ESPA, 2000), a hazard quotient value of HQ < 1 in-
dicates that lifetime consumption of raw cow’s milk samples containing 
the measured level of pesticide residues could not pose health threat in 
the long term or short term risks (Wu et al., 2021). 

HQ =EDI/ADI (2)  

Where: 
EDI: is the estimated daily intake of pesticide residues by consump-

tion of raw cow’s milk. 
ADI: is the acceptable daily intake supposed to be a safe concentra-

tion for life exposure (US EPA, 1991). 

2.4.3. Cumulative risk assessment 
Because we are exposed during our life to mixtures of contaminants 

and pollutants most often present in very low doses (Gioiosa et al., 
2015), the hazard index (HI) was evaluated to assess the residues of 
many pesticides in raw cow’s milk samples and calculated by summing 
the HQs of the individual pesticide residue Eq. (3) (Galani et al., 2020). 

HI values below 1 were considered acceptable and safe for human 
consumption, whereas an HI upper than 1 indicates that the consump-
tion should be considered as a risk to the consumers (Alla et al., 2015; El 
Hawari et al., 2019; Galani et al., 2020).  

HI=HQ1+HQ2+HQ3+…………………+HQn                                     (3)  

3. Results and discussion 

3.1. Characteristics of eligible studies 

A computerized literature search on the different scientific databases 
(Science Direct, Scopus and PubMed) resulted in a total number of 2742 
documents. Four articles were retrieved after checking the references 
section on Google Scholar. A total of 150 articles were ruled out because 
they were duplicates, or they did not meet inclusion criteria and were 
disqualified after a review of the title, abstract or manuscripts. In 
conclusion, we screened 35 research articles that met our purpose (A 
flowchart depicting the choice of studies is shown in Fig. 1). 

The used data covered more than 3612 raw cow’s milk samples that 
were analysed for pesticide residues from 69 regions belonging to 15 
countries around the world (Fig. 1). It appears that 35 pesticide residues 
were detected with different concentrations in 14 developing countries 
and one developed country (Spain) (Fig. 2). Recorded pesticide levels 
were mostly obtained by GC-ECD systems (21 studies); in 6 cases with 
confirmation by GC-MS. Two other works measured with GC-NPD ap-
proaches. Only one used other GLC, and in 4 cases HPLC UV and PDA 
systems were used. Only one study employed combined GC-MS/MS and 
LC-MS/MS approaches, which are a more updated wide scope multi-
residue method (348 pesticides). 

The majority of the pesticide residues (almost 18 residues) belonged 
to organochlorine pesticides (OC) (i.e., pp-DDT, pp-DDE, pp-DDD, op- 
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DDT, op-DDE, op-DDD, α endosulfan, β endosulfan, endosulfan sulfate, α 
HCH, β HCH, γ HCH, δ HCH, heptachlor, heptachlor epoxide, aldrin, 
dieldrin, endrin), organophosphorus pesticides (OP) (almost 9 residues) 
(i.e., coumaphos, parathion-methyl, chlorpyriphos, dimethoate, 
dichlorvos, ethion, malathion, profenos, methamidophos), pyrethroid 
pesticides (PY) (5 residues) (cypermethrin, permethrin, bifenthrin, 
cyhalothrin, deltamethrin), and carbamate compounds (CB) (3 residues) 
(i.e., aldicarb, carbofuran and carbaryl). 

3.2. Bump graph analysis 

Fig. 3 shows a bump graph (Epic Epoch) visualizing the most used 
keywords and their evolution across different periods. It should be noted 
that the change of color hue during these periods showed how the ranks 
of the keywords changed. From 2010 to 2021, the subject areas of 
keywords used in the research field on “pesticides in raw cow’s milk” 
were “Agricultural and Biological Sciences”, “Environmental Science”, 
“Chemistry”, “Medicine and Human Health” and keywords recorded 
were in connection with the technical and/or the social aspects, such as 
“Gas chromatography”, “Mass spectrometry”, “risk assessment”, “food 
safety” and “Food contamination”. 

Moreover, the keyword “Milk” was the most commonly occurring 
keyword from 2010 to 2016, but lost place in the later periods and 
started to drop from first to the third rank in the period between 2019 
and 2020. The keyword “food contamination” was in the sixth and fifth 
rank in 2010 and 2011 respectively, but it appeared in the first rank in 
2020. 

3.3. Organochlorine pesticides 

Organochlorine pesticides (OC) (also called chlorinated hydrocar-
bons) are considered the most dangerous and persistent compounds in 
the environment due to their chemical stability, long biological half-life, 
and high biomagnification in the food chain (Serrano et al., 2008). Most 
OC pesticides are used as insecticides for the control of malaria, typhus, 
and a wide variety of insects (Aktar et al., 2009). OC pesticides such as 
DDT, HCH, heptachlor, lindane, chlordane, endosulfan, aldrin and 
dieldrin may be found in higher concentrations in some human tissues 
such as liver, kidneys, thyroid, heart, mammary glands and testes (Nag, 
2010). Several adverse health effects associated with exposure to OC 
pesticides have been reported in human studies. They show that the 
presence of OC pesticides in human organs leads to increased cancer 

Fig. 1. Flow diagram of the studies selection process following the PRISMA (preferred reporting items for systematic reviews and meta-analyses).  
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risk, and many of them are known as endocrine disruptors, even at low 
concentrations (Ansari et al., 2021). 

Among the organochlorine pesticides reported (32 studies) in raw 
cow’s milk, DDTs have the highest monitoring frequency (27 publica-
tions), followed by endosulfan (20 publications), HCH (19 publications), 
Drins (16 publications), Heptachlor (11 publications), and endrin (8 
publications). 

3.3.1. DDTs levels in raw cow’s milk 
Dichlorodiphenyltrichloroethane (DDT) and its derivatives residues 

levels that were found in raw cow’s milk samples in different countries 
are shown in Tables (1, S1). It can be seen that 3000 raw cow’s milk 
samples collected from 59 regions in 12 countries namely Colombia, 
Egypt, Croatia, India, Ethiopia, Sudan, Pakistan, Uganda, Turkey, 
Mexico, Poland, and Romania were analysed for DDT and its derivatives. 
pp-DDT is the most reported DDT derivative, being monitored in twenty 
studies in forty-six regions across the globe, followed by pp-DDE which 

Fig. 2. Location map of raw cow milk samples collected from different countries across the world to measure pesticides levels including organochlorine, organo-
phosphorus, pyrethroid, and carbamate pesticide residues around the world during the last decade (2010-2021). 

Fig. 3. “Epic epochʺ graph allowing to visualize the most used keywords in each research article for each year, from 2010 to 2021.  
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Table 1 
DDTs, ΣEndosulfan, ΣHCH, Drins, Endrin, Σ Heptachlor residues levels in raw cow’s milk samples reported in research articles published since 2010.  

Refs, Location N Concentration (ng/g); Mean ± SD and/or range (Min-Max) and positive occurrence frequencies (%) 
∑

DDT ΣEndosulfan ΣHCH Drins Endrin Σ Heptachlor 

Abusalma et al. (2014) Sudan, Gezira State 5 842 ± 810 
110-2180 

92.00 _ _ _ _ 

Arif et al. (2021) Pakistan, Lahore 300 2.51 ± 0.55 
(0.98-5.17) 

73.46 0.92 ± 0.16 1.12 ± 0.17 _ _ 

Pakistan, Lahore 60 4.64 ± 0.48 118.90 (0.72-1.89) (0.89-3.06) _ _ 
Ashok Kumar et al. (2013) India, Palia Kalan 10 116 ± 2 

80% 
_ 121 ± 4 _ _ _ 

Aydin et al. (2019) Turkey, Konya 15 12.22 
1.99-81.53 
6% 

16.31 63.6 
(11.23- 
127.19) 

7.74 
(1.96- 
16.61) 

17.32 
(1.27-145) 

11.71 
(BDL-20.38) 

Bedi et al. (2015) India, Punjab 312 1.6 ± 3.9 
10.3% 

1.2 0.9 ± 3.5 
7% 

_ _ _ 

Bošnir et al. (2010) Croatia, Karlovac county 40 0.37 
(0.00-5.51) 
87.5% 

0.81 0.00 
(0.00-2.67) 
41.7% 

_ _ (0-0.51) 
13% 

Bulut et al. (2011) Turkey, Afyonkarahisar 50 _ 9.70 91.32 
(32.57- 
172.63) 
64% 

1.52 4.57 0.34 

Chandrakar et al. (2020) India, Chhattisgarh 100 10 _ _ _ _ _ 
Deti et al. (2014) Ethiopia, Lole 5 (BDL-256.4) 0.00 _ _ _ _ 

Ethiopia, Gonde 5 (BDL-269.7) 0.00 _ _ _ _ 
Ethiopia, Adami Tulu 5 (259.5- 

1230.0) 
95.60 _ _ _ _ 

Ethiopia, Asendabo 5 (50.5-420.8) 155.20 _ _ _ _ 
Díaz Pongutá et al. (2012) Colombia, San Jorge 18 47.2 _ 260.2 ± 112.6 80.1 37.6 ± 12.2 61.7 ± 18.6 

Colombia, Sinú Medio 18 36.5 _ 271 73.8 47.1 ± 19.3 77.3 
Colombia, Sabanas 18 34.3 _ 469.6 ± 7.2 80.1 37.9 ± 10.7 60.1 ± 12.4 
Colombia, Costanera 18 37.1 _ 157.2 30.7 ± 6.3 37.2 ± 4.5 BDL 

Donia et al. (2010) Egypt, Gizeh 60 223 _ 36 ± 20 
(12-46) 
43.3% 

50 ± 20 
(30-72) 
26.7% 

12 ± 10 
(10-16) 
16.7% 

98 

Gebremichael et al. (2013) Ethiopia, Asendabo 10 269 BDL BDL BDL BDL BDL 
Ethiopia, Jimma 10 477 BDL BDL BDL BDL BDL 
Ethiopia, Serbo 10 421 BDL BDL BDL BDL BDL 

Gill et al. (2020) India, Bangalore 216 0.53 10.70 0.76 ± 5.1 _ BDL _ 
India, Bhubaneswar 204 1.5 1.24 BDL _ BDL _ 
India, Ludhiana 258 0.24 0.20 0.09 ± 1.5 _ 0.24 ± 3.2 

(_-50) 
2% 

_ 

India, Guwahati 270 1.72 1.21 ± 10.7 0.79 ± 7.3 _ BDL _ 
India, Udaipur 235 0.65 0.00 0.17 ± 2.6 _ 0.09 ± 1.3 (_- 

20) 
1% 

_ 

Gutiérrez et al. (2012) Mexico, Chiapas 36 1.53 5.15 18.7 0.77 0.66 0.67 
Gutierrez et al. (2013) Mexico, Hidalgo 12 0.27 ± 0.37 1.12 1.73 (BDL-7.03) (BDL-5.95) (BDL-5.84) 
Hernández et al. (2010) Colombia, San Pedro 16 630 650.00 _ 620 820 ± 270 BDL 

Colombia, San Pedro 16 290 260.00 _ 251 ± 100 530 ± 220 320 ± 130 
Colombia, San Pedro 16 810 ± 270 150.00 _ 1200 510 ± 160 230 ± 70 

Ishaq and Nawaz (2018) Pakistan, Sahiwal 20 7.33 
(0.05-15.61) 

311.15 1.34 11.83 
(2.08- 
18.46)   

Jawaid et al. (2016) Pakistan, Hyderabad 45 _ 13.40 _ _   
Kampire et al. (2011) Uganda, Kampala 54 50 2.00 26 ± 3 

(1-86) 
85% 

16   

Kaushik et al. (2011) India, Haryana 147 36.7 ± 38.5  
(1.7-286.4) 

_ 29.3 _   

Kotinagu and Krishnaiah 
(2015) 

India, Musi river belt 48 BDL BDL BDL BDL  BDL 

Kuba et al. (2015) Poland, Slaskie 25 0.319 ± 0.444 
(0.014-1.886) 

_ _ _ _ _ 

Poland, 
Zachodniopomorskie 

25 0.387 ± 0.250 
(0.074-1.140) 

_ _ _ _ _ 

Muhammad et al. (2012) Pakistan, Faisalabad 200 _ 260 ± 20 _ _ _ _ 
Năstăsescu et al. (2020) Romania, Campina 14 181 _ _ _ _ _ 

Romania, Ploiesti 14 218 _ _ _ _ _ 
Romania, Valea Doftanei 14 113.4 _ _ _ _ _ 

Nath et al. (2013) India, Patna 23 9.26 ± 6.02 
(BDL-22.2) 
33.89% 

30.53 ± 14.13 
33.33% 

_ _ _ _ 

Raslan et al. (2018) Egypt, Zagazig 20 54.77 ± 11.14 _ 83.09 _ _ _ 
Rusu et al. (2016) Romania, Bacau 18 BDL _ 279.7 _ _ _ 

(continued on next page) 
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is monitored in nineteen studies in 44 regions worldwide, then pp-DDD 
(12 studies in 29 regions), op-DDT (10 studies in 30 regions), op-DDD (8 
studies in 29 regions), and op-DDE (5 studies in 8 regions). 

It appears that pp-DDT was in the highest concentration among the 
DDTs levels (810 ± 270 ng/g), followed by op-DDT (482 ng/g), pp-DDE 
(213 ng/g), pp-DDD (174 ± 3 ng/g), and op-DDD was (170 ng/g) in the 
lowest concentration. DDTs total concentration (2180 ng/g) was found 
to be at the highest concentration of codex maximum residue levels (20 
ng/g) (Codex Alimentarius Commission, 2020). 

It should be noted that DDTs contaminated 18.88% (525 samples) of 
raw cow’s milk samples across the globe with a concentration above the 
maximum residue level (20 ng/g). The highest value (2180 ng/g) was 
recorded in cow’s milk samples collected from the Gezira state in Sudan 
where an unsafe use of pesticides was applied (Abusalma et al., 2014). 
Comparatively, a high concentration of total DDTs (1230 ng/g) was 
reported in the area treated recently with pesticides for malaria vector 
control in Ethiopia (Deti et al., 2014). 

Total DDTs were detected in raw cow’s milk samples from four 
countries (Colombia, Ethiopia, Romania and Egypt). In Colombia, DDTs 
concentrations were 810 ± 270, 630 ± 210 and 290 ± 120 ng/g and 
were detected in the milk of cows grazing on three traditional cotton 
farms (Hernández et al., 2010). In Ethiopia, DDTs concentrations were 
477, 421 and 269 ng/g and were found in the milk of cows reared in 
three malarious and spraying DDT areas (Gebremichael et al., 2013), as 
well as 420.80, 253 and 243 ng/g in areas with pesticides use to control 
pests and malaria (Deti et al., 2014). In Romania, DDTs concentrations 
were 218, 181 and 113.40 ng/g and recorded in the milk of cows reared 
in three urban areas with intensive industrial and medium agriculture 
activities, urban areas with medium industrial and agriculture activities, 
and urban areas with agriculture activity, respectively (Năstăsescu et al., 
2020). In Egypt, the concentration (223 ng/g) was reported in the milk 
of animal farms (Donia et al., 2010). 

It should be noted that 1823 (60.76%) raw cow’s milk samples out of 
3000 that reported the DDTs level in raw cow’s milk samples across the 
globe were collected from different regions in India. However, only 157 
(8.61%) raw cow’s milk samples had concentrations higher than the 
MRL (20 ng/g) (Codex Alimentarius Commission, 2020). Kaushik et al. 
(2011) reported a high mean DDTs value (36.7 ± 38.5 ng/g) compared 
to MRL in 147 raw cow’s milk samples from Haryana, India. DDTs levels 
in raw cow’s milk samples collected in Palia kalan region (India) were 
significantly higher than the MRL level (116 ± 2 ng/g) (Ashok Kumar 
et al., 2013). 

Milk samples collected from different regions in Pakistan represent 
approximately 20% (580 samples) of milk analysed across the globe. 
Only 6 raw cow’s milk samples (10%) out of 150 collected in Punjab, 
Pakistan were found to contain higher DDTs levels compared to MRL 
levels (ul Hassan et al., 2014). 

DDTs levels in raw cow’s milk samples collected in Colombia (7 re-
gions), Ethiopia (7 regions), Romania (3 regions), Uganda (1 region), 
and Egypt (2 regions) were exceeding the MRL levels. 

Additionally, Table S1 shows that DDTs levels in raw cow’s milk 
samples vary significantly from one region to another in the same 
countries. In Ethiopia, the concentration of DDTs in raw cow’s milk 
samples was reported very high in Adami Tulu region compared to 
Asendabo region, Gonde region, and Lole regions. These variations in 
concentration levels may be due to the presence of agrochemical com-
panies in Adami Tulu region which are formulating DDT, and other 
pesticides for local consumption in that region (Deti et al., 2014). 

Besides, it should be noted that the type of agriculture activities 
could affect the contamination level. In Romania, a recent study 
revealed that DDTs level in raw cow’s milk samples collected in Ploiesti 
region, considered as an urban area with intensive industrial and me-
dium agriculture activities was higher compared to those recorded in 
Campina, an urban area region with medium industrial and agriculture 
activities, and those recorded in Valea Doftanei, an urban area with 
agriculture activity (Năstăsescu et al., 2020). 

Hernández et al. (2010) showed that the concentrations of DDTs 
residues in cow’s milk samples collected from two traditional cotton 
Colombian farms using supplementation of seeds and soca to cattle feed 
were two times higher than the DDTs level in the raw milk collected 
from cows reared in a traditional cotton farm. In the same way, Arif 
et al. (2021) found that the total DDTs analysed in 60 raw cow’s milk 
samples collected from dairy farms in Lahrore region, Pakistan was two 
times higher than the total DDTs analysed in 300 raw cow’s milk sam-
ples collected from urban areas. 

3.3.2. Endosulfan levels in raw cow’s milk 
Endosulfan was defined as persistent organic pollutants (POPs) in 

2011 by the Stockholm Convention and its use has been restricted by 
several countries (UNEP-POP, 2011); however, endosulfan is being used 
in developing countries due to the absence of other organic choices 
and/or regulation lacking (Sathishkumar et al., 2021). Consequently, 
endosulfan residues have been found in farmed and cultivated food 
products, drinking water sources, and living organisms (Bertero et al., 

Table 1 (continued ) 

Refs, Location N Concentration (ng/g); Mean ± SD and/or range (Min-Max) and positive occurrence frequencies (%) 
∑

DDT ΣEndosulfan ΣHCH Drins Endrin Σ Heptachlor 

Sajid et al. (2016) Pakistan, Faisalabad 50 BDL 67.00 _ _ _ _ 
Singh et al. (2013) West Bengal, Nadia 210 _ 59.00 6 

0.95% 
_ _ _ 

ul Hassan et al. (2014) Pakistan, Punjab 150 50 
(45-1630) 
10% 

130.00 _ 680 _ _ 

Witczak et al. (2013) Poland, Chojna 1 5 1.72 _ 0.72 0.534 0.116 ± 0.033 1.767 
Poland, Sobieradz 5 2.37 _ 1.43 3.171 0.158 ± 0.029 1.634 
Poland, Chojna 2 5 2.37 _ 1.21 3.21 0.024 ± 0.007 0.848 
Poland, Wielboki 5 2.48 _ 1.65 1.255 0.082 ± 0.066 1.289 
Poland, Szczecin 1 5 2.58 _ 0.917 2.501 0.10 ± 0.006 1.121 
Poland, Maszewo 5 2.63 _ 1.521 2.156 0.114 ± 0.060 1.43 
Poland, Czaplinek 1 5 2.76 _ 1.412 2.87 0.058 ± 0.033 1.049 
Poland, Rychlik 5 3.10 _ 1.809 1.751 0.229 ± 0.021 1.976 
Poland, Czaplinek 2 5 3.20 _ 2.371 1.451 0.106 ± 0.019 1.49 ± 0.150 
Poland, Kielce 5 3.63 _ 1.254 0.204 0.309 ± 0.108 1.896 
Poland, Głowczyca 5 3.63 _ 2.026 1.795 0.14 ± 0.069 1.117 
Poland, Łysinin 5 3.65 _ 4.031 4.92 0.44 ± 0.010 2.307 
Poland, Szczecin 2 5 3.75 _ 0.737 2.074 0.171 ± 0.121 0.984 ±

0.086 
Poland, Przesocin 5 3.90 _ 1.289 0.888 0.162 ± 0.065 1.396 
Poland, Bierzwnik 5 7.08 _ 1.762 1.74 0.207 ± 0.105 2.854 

_: Data not available, BDL: Below Detection Limit, N: Samples sizes, %: occurrence frequencies. 
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2020; Souza et al., 2020). 
Tables (1, S2) show the concentration of α endosulfan, β endosulfan, 

endosulfan sulfate and endosulfan in raw cow’s milk samples from 9 
different countries in 33 regions of the world, found in twenty-one 
studies. α endosulfan and β endosulfan were the most monitored con-
taminants with 13 studies in 18 regions, followed by endosulfan sulfate 
with 9 studies in 18 regions. β endosulfan represents the highest con-
centration of endosulfan in raw cow’s milk samples (297.1 ng/g) fol-
lowed by α endosulfan with 228.6 ng/g, then endosulfan sulfate with 
42.02 ng/g. 

Moreover, it should be noted that 62% of the analysed endosulfan 
samples (1813 out of 2923) have been reported in India, 27% in 
Pakistan, and 11% in Colombia, Croatia, Ethiopia, Mexico, Sudan, 
Turkey, and Uganda. It must also be noted that the mean concentration 
of endosulfan in 1418 raw cow’s milk samples (48.36%) is much greater 
than their assigned MRL values (10 ng/g) (Codex Alimentarius Com-
mission, 2020). 

The highest value of endosulfan (650 ng/g) was reported in raw 
cow’s milk samples collected in the north of Colombia from two tradi-
tional cotton cultivation farms that used soca as a nutritional supple-
ment, and was from a farm which had a vocation of breeding and was 
traditionally supplemented by cotton seeds (Hernández et al., 2010). 
Furthermore, a high concentration of endosulfan (300 ng/g) was re-
ported in raw cow’s milk samples from different places in Gezira state 
(Sudan) after field spraying by endosulfan (Abusalma et al., 2014). 

Deti et al. (2014) recorded pesticide concentrations equivalent to 
155 ng/g and 95 ng/g in milk collected from cows reared in two areas 
that used pesticides to control pests and malaria in Ethiopia. 

In addition, endosulfan concentration in raw cow’s milk samples has 
been studied by several authors in different regions in Pakistan and the 
mean concentrations of endosulfan were above MRL (Arif et al., 2021; 
Ishaq and Nawaz, 2018; Jawaid et al., 2016; Muhammad et al., 2012; 
Sajid et al., 2016; ul Hassan et al., 2014). Endosulfan was detected above 
MRL (10 ng/g) in 1% (22) of raw cow’s milk samples from 1831 samples 
collected in India. Singh et al. (2013) reported that 2 raw cow’s milk 
samples out of 210 samples collected from west of Benga (India) were 
higher than MRL (10 ng/g). Also, Nath et al. (2013) found that 19 
samples (33%) of raw cow’s milk collected from Patna region (India) 
were slightly contaminated with endosulfan with a mean concentration 
of 30.53 ng/g. 

In the same way, other studies revealed that the concentration of 
endosulfan in raw cow’s milk samples from different regions in India 
was below MRL (Table S2) (Bedi et al., 2015; Gill et al., 2020; Kotinagu 
and Krishnaiah, 2015). The level of endosulfan was below the detectable 
limit in 235 raw cow’s milk samples collected from Udaipur region, 
India (Gill et al., 2020), and in 48 raw cow’s milk samples collected from 
Musi river belt, India (Kotinagu and Krishnaiah, 2015), and five regions 
in Ethiopia (Deti et al., 2014; Gebremichael et al., 2013). 

3.3.3. HCHs levels in raw cow’s milk 
HCH is considered one of the most widely used pesticides and has 

been manufactured since the second world war (Vijgen et al., 2019). 
HCH and its isomers such as α-, β-, γ-, and δ HCH have been classified as 
POPs (persistent organic pollutants) by the Stockholm Convention and 
categorized as possible human carcinogens by the United States Envi-
ronmental Protection Agency (EPA, 2003). 

Tables (1, S3) show data extracted from 20 studies that analysed 
HCH in 44 regions around the world, 19 studies that analysed γ-HCH in 
43 regions, 12 research articles that analysed α HCH in 31 regions, 10 
studies that analysed β HCH in 26 regions and 11 studies that reported 
the level of δ HCH in 13 regions. Sixty-nine percent of the total samples 
were from India while the rest 31% were from Colombia, Croatia, Egypt, 
Ethiopia, Mexico, Pakistan, Poland, Romania, Turkey and Uganda. 

The highest value of HCH isomers was recorded for α HCH with a 
concentration of 469 ± 7.2 ng/g, followed by γ-HCH with a concen-
tration value of 212.4 ng/g, then β HCH and δ HCH with a concentration 

of 172.63, 48.65 ± 15.12 ng/g, respectively. 
The ΣHCH residues in raw cow’s milk samples ranged between the 

Below Detection Limit (BDL) to 469.6 ± 7.2 ng/g during the last ten 
years. One hundred (3.60%) samples out of 2772 collected in different 
areas across the globe exceeded MRL (100 ng/g) for ΣHCH (Kaushik 
et al., 2011; WHO, 1973). 

Díaz Pongutá et al. (2012) reported that the level of ΣHCH in raw 
cow’s milk samples collected from four different regions in Colombia 
was higher than MRL. Moreover, the level of ΣHCH in 10 raw cow’s milk 
samples collected from Palia kalan region (India) was reported slightly 
higher than MRL (Ashok Kumar et al., 2013). Also, the level of ΣHCH 
was found more than two times higher than MRL in raw cow’s milk 
samples collected from Bacau district in Romania (Rusu et al., 2016). 

Tables (1, S3) show that 1910 raw cow’s milk samples collected from 
ten regions in India were below MRL except in Palia Kalan region 
(Table S3). The level of ΣHCH residues was reported below MRL by 
several authors in different countries (Croatia, Egypt, Ethiopia, Mexico, 
Pakistan, Poland, Turkey and Uganda). 

3.3.4. Heptachlor levels in raw cow’s milk 
Heptachlor, a chlorinated hydrocarbon insecticide, is one of the 

synthetic pesticides which has been used against termites and soil in-
sects (Prado et al., 2009). Heptachlor pesticide can attack the central 
nervous system and causes neurological disorders such as Lewy pa-
thology (Ross et al., 2019), and it has been also considered as carcino-
genic to humans by WHO (1984). However, heptachlor insecticides are 
still used in agriculture and public health program in several developing 
countries due to their low cost in controlling different pests (Purnomo 
et al., 2013). Also, it is an environmentally ubiquitous contaminant 
found in food, human milk, soil, plants, marine animals and wildlife 
tissues (Chuang and Chuang, 1998; Prado et al., 2009). 

Tables (1, S4) show that Σ Heptachlor (Heptachlor and Heptachlor 
epoxide) levels varied from BDL to 320 ± 130 ng/g in different coun-
tries. The highest values were recorded in San Pedro region, Colombia 
from two traditional cotton cultivation farms that used soca as a nutri-
tional supplement, followed by milk samples collected from Egypt. 
Moreover, it should be noted that 129 (26%) of raw cow’s milk samples 
collected from one region in Turkey, three regions in Colombia, and one 
region in Egypt were higher than MRL set by the Codex Alimentarius 
Commission (2020). Whereas, 357 (74%) of raw cow’s milk samples 
collected from 30 regions in 7 countries (Colombia, Ethiopia, India, 
Macedonia, Turkey, Mexico and Croatia) were below MRL (Table S4). 

Heptachlor levels varied from one region to another in the same 
country due to farming system models such as industrial farms or 
organic farms, and the degree of environmental contamination. In 
Colombia, Díaz Pongutá et al. (2012) reported that milk samples from 
the Sabanas, San Pedro and Sucre regions contained Heptachlor in 
values higher than MRL while in the Costanera region they were below 
the detection limit (Table S4). 

In Mexico, Gutiérrez et al. (2013, 2012) reported that heptachlor in 
raw cow’s milk samples was 0.4 ± 0.28 ng/g in industrial farms in Hi-
dalgo region, and 0.670 ng/g in organic farms in Chiapas region. 
Moreover, in Turkey, Bulut et al. (2011) recorded a low level of hepta-
chlor in raw cow’s milk collected from Afyon karahisar region, while a 
high level was recorded from Konya district (Aydin et al., 2019). The 
urban air of Konya city was recorded in 2009 as contaminated by OHPs 
by the same authors (Ozcan and Aydin, 2009). 

3.3.5. Drins and endrin levels in raw cow’s milk 
Fourteen studies reported the levels of Drins and endrin in 2213 raw 

cow’s milk samples collected from 41 regions. Drins concentrations 
varied from BDL to 1200 ng/g. Table S4 shows that 60% (611 samples) 
of raw cow’s milk samples analysed for Drins were below MRL (6 ng/g), 
while 40% (419 samples) were above MRL. 

In Colombia, the level of Drins in raw cow’s milk samples collected 
from different regions was exceeding the MRL and the highest level was 
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recorded in San Pedro, Sucre region (Hernández et al., 2010). The level 
of Drins in raw cow’s milk samples collected from 3 different areas in 
Ethiopia, and one area in India were below detectable limits (Gebre-
michael et al., 2013; Kotinagu and Krishnaiah, 2015). Moreover, the 
level of Drins in milk collected from two different regions in Mexico, and 
15 different regions in Poland were below MRL (Gutiérrez et al., 2012; 
Witczak et al., 2013), while the level in milk collected from Egypt and 
Uganda were exceeded MRL levels (Donia et al., 2010; Kampire et al., 
2011). 

Other studies conducted in different regions in Turkey and Pakistan 
showed that the level of Drins in raw cow’s milk samples varied from 
region to region depending on the spread of these environmental pol-
lutants in the food chain and water. The level of Drins in raw cow’s milk 
samples collected from Afyonkarahisar, Turkey was below MRL (Bulut 
et al., 2011) while the level was slightly higher than MRL in milk 
collected from Konya District, Turkey (Aydin et al., 2019). In the same 
way, in Pakistan, the level of Drins was below MRL in Lahore region, 
while the level was higher than MRL in Sahiwal region, and Punjab 
region, respectively (Ishaq and Nawaz, 2018; ul Hassan et al., 2014). 

The level of endrin in raw cow’s milk samples ranged from BDL to 
820 ng/g. It should be noted that the level of endrin in 84.50% (1336 
samples) of raw cow’s milk samples collected from several countries 
(Mexico, Ethiopia, Poland, and India) was below MRL (1 ng/g). In the 
same way, 14.50% (245 samples) of raw cow’s milk samples collected 
from three countries (Colombia, Turkey, and Egypt) were contaminated 
with endrin at levels higher than MRL (1 ng/g) (Codex Alimentarius 
Commission, 2020). 

The highest levels of endrin in raw cow’s milk samples were recorded 
in different regions in Colombia with the highest value (820 ng/g) in San 
Pedro, Sucre region (Hernández et al., 2010), and the lowest value was 
(37.2 ng/g) recorded in milk collected from Costanera region (Díaz 
Pongutá et al., 2012). The level of endrin in raw cow’s milk samples 
collected from three regions in Ethiopia, and three regions in India were 
below detectable limits (Gebremichael et al., 2013; Gill et al., 2020). 

Endrin levels in 15 different regions in Poland, one region in India, 
and one region in Mexico were not exceeding MRL (Bulut et al., 2011; 
Gill et al., 2020; Gutiérrez et al., 2012; Witczak et al., 2013), while the 
level of endrin was exceeding MRL in raw cow’s milk samples collected 
from cows reared in Afyonkarahisar region, and in Konya district, in 
Turkey (Aydin et al., 2019; Bulut et al., 2011). In addition, Donia et al. 
(2010) reported that the level of endrin in raw cow’s milk samples 
collected from different regions in Egypt was above MRL. 

3.4. Organophosphorus pesticides 

Organophosphorus (OP) are phosphoric, phosphonic, and thiophos-
phoric acids-derived pesticides. They are a commonly used group of 
pesticides and constitute roughly 38% of the total pesticide utilized 
universally (Vijayan and Abdulhameed, 2020). Regardless of being less 
persistent compounds in the environment compared to organochlorine 
pesticides, several authors reported the presence of OP residues 
including malathion, chlorpyriphos, dichlorvos, profenofos, coumaphos, 
methamidophos, ethion and dimethoate in milk. They can bio-
accumulate in human organs (Chawla et al., 2018), and can cause 
harmful effects on human health, such as cancer (Sun et al., 2020), 
neurodegenerative diseases (Jokanović, 2018), and metabolic disorders 
like the risk of obesity and type 2 diabetes mellitus (Czajka et al., 2019). 

Despite their wide use, a relatively low number of studies (12 pub-
lications) have reported organophosphorus pesticides analysis in raw 
cow’s milk compared to other related pesticides such as organochlorine. 
A total of 9 organophosphorus pesticides were identified in raw cow’s 
milk samples collected from different countries since 2010, including 
malathion, dimethoate, chlorpyriphos, profenofos, coumaphos, 
dichlorvos, ethion, and Parathion methyl. Of all organophosphorus 
pesticides reported here, chlorpyriphos had the highest monitoring 
frequency (7 publications), followed by malathion, and profenofos (5 

publications), dimethoate (4 publications), coumaphos (3 publications) 
and dichlorvos, ethion, methamidophos, and parathion methyl (2 
publications). 

A total of 5106 (73.38%) samples analysed for organophosphorus 
were collected from India, and 1852 (26.62%) samples from Brazil, 
Egypt, Chile, Pakistan, and Spain. The level of each organophosphorus 
pesticide in raw cow’s milk samples reported in available publications 
was summarized in Table 2. 

Malathion has been found in 455 samples in 5 regions from 3 
countries (Egypt, India and Brazil). Five out of 455 samples were 
exceeding MRLs while the highest reported mean value (20.20 ± 5.89 
ng/g) was recorded in samples collected from Panta region (India) 
(Nath et al., 2013). Chlorpyriphos was reported in 1836 samples 
collected from 11 regions in 2 countries (India and Pakistan). Only 35 
out of 200 samples (17%) collected in Faisalabad city in India were 
above MRL (12 ng/g) (Codex Alimentarius Commission, 2020). 
Dimethoate was reported in 168 samples from 4 regions in three coun-
tries (Brazil, India and Egypt) and only the mean concentration of 8 out 
of 48 samples collected from Musi river belt region, India was above the 
MRL (Kotinagu and Krishnaiah, 2015). 

Profenofos was reported in 1625 samples collected from 9 regions in 
three countries (India, Pakistan and Egypt). The highest value was re-
ported in the milk of Bangalore area, India (Gill et al., 2020). Couma-
phos was reported in 302 samples collected from 3 regions in two 
countries (Brazil and Spain) and the highest value was reported in milk 
collected from the northwest region of Spain (Melgar et al., 2010). 
Methamidophos was reported in 34 samples collected in two countries 
(Pakistan and Chile) and all analysed samples were below the detection 
limit (Lapierre et al., 2019; Sajid et al., 2016). 

Ethion was reported in 1495 samples collected in 6 regions in India. 
Ethion was detected in less than 14% of 209 samples (Bedi et al., 2015; 
Gill et al., 2020). Dichlorvos was reported in 242 raw cow’s milk sam-
ples in Agreste region (Brazil) and was detected in 5.78% of milk sam-
ples at a level below MRL (Codex Alimentarius Commission, 2020; 
Fagnani et al., 2011). Finally, parathion methyl was reported in 272 
samples collected from two countries (Spain and Brazil) and it was 
detected in less than 1% of samples with the highest value recorded in 
Spain (Melgar et al., 2010). 

3.5. Pyrethroid pesticides 

Pyrethroids are synthetic organic insecticides derived from the 
naturally occurring flowers of pyrethrums (Chrysanthemum Coccineum 
and Chrysanthemum cinerariae folium) (Zacharia, 2011). They have 
been used worldwide since 1980 and are considered as the safest com-
pounds for use in food due to their photo degradation, effectiveness 
against various insects, and the low toxicity compared to other pesti-
cides such as OC, OP, and CB (Yoo et al., 2016). However, despite low 
toxicity, and the high level of effectiveness against target organisms, 
prenatal exposure to pyrethroid pesticides and their metabolites may be 
associated with a variety of behavioural and executive functioning 
deficits (Furlong et al., 2017) and could affect the nervous, cardiovas-
cular, immune, and genetic systems of organisms (Tang et al., 2018). 

From literature, raw cow’s milk contamination with synthetic py-
rethroid is poorly documented. For the purposes of this review, 8 studies 
were reported synthetic pyrethroid pesticide content in raw cow’s milk 
in 14 regions around the world. Of the 2024 raw cow’s milk samples 
analysed, 1595 samples (78.80%) were collected from India, 420 
(20.75%) from Pakistan, and 9 samples from Chile (Table 3). 

Cypermethrin was reported in 1870 samples in 9 regions from two 
countries (Pakistan and India). In Pakistan, Cypermethrin was detected 
in 40 out of 200 samples collected from Faisalabad area, and 31 out of 
150 samples collected from Punjab region at levels above MRL (5 ng/g) 
(Muhammad et al., 2012; ul Hassan et al., 2014). The highest value 
(15400 ng/g) was reported in milk collected from Punjab area. 
Permethrin was recorded in 1367 samples from ten regions in three 
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countries (Pakistan, India and Chile). The highest value (1840 ng/g) was 
reported in milk collected from Udaipur (India) (Gill et al., 2020). 

Bifenthrin was reported in 220 samples in three regions from 
Pakistan. The highest value (1768 ng/g) detected in milk samples 
collected from Punjab areas in Pakistan at levels above MRL (200 ng/g) 
(ul Hassan et al., 2014). 

Cyhalothrin was identified in 1720 samples from eight regions in two 
countries (Pakistan and India). Thirty-eight out of 200 samples (19%) 
collected in Faisalabad region (Pakistan) were contaminated with 
Cyhalothrin at a level above MRL (200 ng/g) (Muhammad et al., 2012). 
Deltamethrin was reported in 587 samples in four regions from two 
countries (Pakistan and India). Ten out of 150 samples (7%) of milk 
collected in Punjab region (Pakistan) were contaminated with levels 
above MRL (50 ng/g) (Codex Alimentarius Commission, 2020). In this 
region, the range of Deltamethrin varied between 2450 and 5030 ng/g 
(ul Hassan et al., 2014). 

3.6. Carbamate pesticides 

Carbamate (CB) pesticides including carbaryl, carbofuran, and ami-
nocarb are organic compounds similar in structure and purpose to OP 
pesticides (Zacharia, 2011). Carbamate insecticides are used abundantly 
by households and for agriculture purposes (Blodgett and Means, 2013). 
Milk contamination with CB pesticides could cause a serious risk to 
humans and animals since these compounds have been linked with 
cancer, reproduction toxicity (da Silva et al., 2014), and neurotoxic ef-
fects (Herbert et al., 2021; Vidair, 2004). 

Only two studies were found, investigating the content of carbamates 
(carbaryl, aldicarb, and carbofuran) in raw cow’s milk samples collected 
in two regions in Brazil (Table 3). Concentrations of carbaryl (0.02 ±
0.06 ng/g), aldicarb (0.02 ± 0.04 ng/g), and carbofuran (0.01 ± 0.01 
ng/g) in 30 raw cow’s milk samples collected in Agreste region (Brazil) 
were below MRL (Fagnani et al., 2011), while their concentrations were 
below detection limits in 30 samples collected in Parana State, Brazil 
(da Silva et al., 2014). 

Table 2 
OP residues levels in raw cow’s milk samples reported in research articles 
published since 2010.  

Pesticide Refs. Location N Concentration (ng/ 
g); Mean ± SD and/ 
or range (Min-Max) 
and positive 
occurrence 
frequencies (%) 

Chlorpyriphos Bedi et al. 
(2015) 

India, Punjab 312 2.2 ± 8.5 (6.4%) 

Jawaid et al. 
(2016) 

Pakistan, 
Hyderabad 

45 0.6 (0.1-1.6) 

Gill et al. 
(2020) 

India, 
Bangalore 

216 (_-81) 1.71 ± 11.1 
5% 

India, 
Bhubaneswar 

204 (_-71) 1.30 ± 9.1 4% 

India, 
Ludhiana 

258 (_-85) 1.57 ± 10.3 
6% 

India, 
Guwahati 

270 (_-65) 0.76 ± 6.5 4% 

India, 
Udaipur 

235 (_-130) 1.62 ± 12.7 
4% 

Kotinagu and 
Krishnaiah 
(2015) 

India, Musi 
river belt 

48 BDL 

Muhammad 
et al. (2012) 

Faisalabad, 
Pakistan 

200 72 ± 10 (17%) 

Nath et al. 
(2013) 

India, Patna 23 1.6 (5.56%) 

Sajid et al. 
(2016) 

Pakistan, 
Faisalabad 

25 4 ± 0.05 

Dichlorvos Fagnani et al. 
(2011) 

Brazil, 
Agreste 

30 0.06 ± 0.13 (0.01- 
0.05) 

Melgar et al. 
(2010) 

Spain, 
Northwest 

242 9 (6 - 20) 5.78% 

Dimethoate da Silva et al. 
(2014) 

Brazil, Parana 30 (BLD-0.15) 

Donia et al. 
(2010) 

Egypt, Gizeh 60 BDL 

Fagnani et al. 
(2011) 

Brazil, 
Agreste 

30 0.01 ± 0.02 (0.01- 
0.11) 

Kotinagu and 
Krishnaiah 
(2015) 

India, Musi 
river belt 

48 (BDL-130) 

Ethion Bedi et al. 
(2015) 

India, Punjab 312 0.3 ± 2.9 1.30% 

Gill et al. 
(2020) 

India, 
Bangalore 

216 1.05 ± 8.9 (_-86) 3% 

India, 
Bhubaneswar 

204 0.68 ± 6.7 (_-73) 2% 

India, 
Ludhiana 

258 0.80 ± 7.4 (_-74) 3% 

India, 
Guwahati 

270 1.46 ± 20.0 (_-320) 
2% 

India, 
Udaipur 

235 1.02 ± 9.0 (_-83) 3% 

Malathion Bedi et al. 
(2015) 

India, Punjab 312 0.4 ± 3.9 (0.9%) 

da Silva et al. 
(2014) 

Brazil, Parana 30 (BDL-1.46) 

Donia et al. 
(2010) 

Egypt, Gizeh 60 BDL 

Fagnani et al. 
(2011) 

Brazil, 
Agreste 

30 0.02 ± 0.03 (0.01- 
0.20) 

Nath et al. 
(2013) 

India, Patna 23 20.20 ± 5.89 
(22.22%) 

Methamidophos Lapierre et al. 
(2019) 

Chile, Los 
Ríos 

1 BDL 

Chile, La 
Araucanía 

3 BDL 

Chile, Los 
Lagos 

5 BDL 

Sajid et al. 
(2016) 

Pakistan, 
Faisalabad 

25 BDL 

Parathion 
methyl 

Fagnani et al. 
(2011) 

Brazil, 
Agreste 

30 BDL (0.01-12.89)  

Table 2 (continued ) 

Pesticide Refs. Location N Concentration (ng/ 
g); Mean ± SD and/ 
or range (Min-Max) 
and positive 
occurrence 
frequencies (%) 

Melgar et al. 
(2010) 

Spain, 
Northwest 

242 7 (5-9) 0.83% 

Profenofos Bedi et al. 
(2015) 

India, Punjab 312 0.2 ± 1.6 (1.6%) 

da Silva et al. 
(2014) 

Brazil, Parana 30 (BDL - 0.53 

Donia et al. 
(2010) 

Egypt, Gizeh 60 BDL 

Fagnani et al. 
(2011) 

Brazil, 
Agreste 

30 0.04 ± 0.016 (0.01- 
0.87) 

Jawaid et al. 
(2016) 

Pakistan, 
Hyderabad 

45 2.1 (1-9) 

Gill et al. 
(2020) 

India, 
Bangalore 

216 0.94 ± 8.0 (_-74) 3% 

India, 
Bhubaneswar 

204 0.32 ± 4.6 (_-66) 1% 

India, 
Ludhiana 

258 0.78 ± 7.2 (_ - 71) 
3% 

India, 
Guwahati 

270 (_-68) 0.25 ± 4.1 1% 

India, 
Udaipur 

235 0.31 ± 4.8 (_-73) 1% 

Melgar et al. 
(2010) 

Spain, 
Northwest 

242 93 (29-220) 2.06% 

Sajid et al. 
(2016) 

Pakistan, 
Faisalabad 

25 1.3 ± 1.7 

_: Data not available, BDL: Below Detection Limit, N: Samples sizes. 
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3.7. Risk assessment of raw cow’s milk consumption 

3.7.1. Estimated daily intake (EDI) 

3.7.1.1. Organochlorine. The EDI of DDTs, HCHs, endosulfan, Hepta-
chlor, Drins, and endrin (expressed in ng/kg body weight (BW)/day) for 
raw cow’s milk samples is shown in Table 4. Unlike other foods such as 
sugar and fruit juice, milk consumption in different countries across the 
globe is lower at older ages and higher at younger ages (Singh et al., 
2015). The acceptable daily intake regarding DDTs is set to 10000 ng/kg 
BW. The EDI of DDTs in raw cow’s milk samples across the globe ranged 
from 0 to 5090 ng/kg BW/day. It was notable that the estimated daily 
intakes of DDTs in all milk analysed across the globe were lower than 
guidelines values(Codex Alimentarius Commission, 2020). 

As for HCHs, the Provisional Tolerable Daily Intake (PTDI) given by 
the Codex Alimentarius Commission (2020) is 5000 ng/kg BW. The 
exposure to HCHs through raw cow’s milk across the globe ranged be-
tween 0 and 2590 ng/kg BW/day, while the highest EDI value for HCHs 
was recorded in milk collected from Bacau district in Romania. 
Furthermore, no analysed samples exceeded the acceptable daily intake 
(ADI) and/or PTDI (Table 4). 

In the case of Heptachlor, the ADI/PTDI is set to 100 ng/kg BW/day 
and the estimated daily intake of Heptachlor through raw cow’s milk 
consumption ranged from 0 to 349 ng/kg BW/day. The highest value of 
EDI was recorded in milk collected from Costanera region (Colombia). 
Except for three regions (9.37%) in Colombia, the EDIs of Heptachlor in 
analysed milk were lower than ADI/PTDI (Codex Alimentarius Com-
mission, 2020) (Table 4). 

The ADI value regarding Drins is set to 100 ng/kg BW/day. The EDI 

values of Drins ranged from 0 to 5420 ng/kg BW/day while the raw milk 
of Sucre region in Colombia revealed the highest EDI value (5420 ng/kg 
BW/day). Pesticides level recorded from 9 regions (23.68%) out of 38 
were above ADI/PTDI (Table 4). 

Concerning Endrin, the ADI is 200 ng/kg BW/day and the EDI for 
Endrin ranged between 0 and 2130 ng/kg BW/day. The highest EDI 
value was recorded in milk collected from Sinú Medio region in 
Colombia. Endrin value in one region out of 29 (3.44%) was exceeding 
the ADI/PTDI value (Table 4). 

Regarding Endosulfan, the recommended maximum ADI/PTDI is 
6000 ng/kg BW/day (Codex Alimentarius Commission, 2020). The 
average Endosulfan consumption through milk ranged between 0 and 
2940 ng/kg BW/day. The highest EDI (2940 ng/kg BW/day) was 
recorded in milk collected in Sucre region in Colombia. 

3.7.1.2. Organophosphorus. The EDI of organophosphorus pesticides 
including malathion, dimethoate, chlorpyriphos, profenofos, couma-
phos, dichlorvos, methamidophos, ethion, parathion methyl (expressed 
in ng/kg BW/day) for raw cow’s milk samples did not exceed the 
guideline values (Table 5). 

3.7.1.3. Carbamates. None of the EDI-carbaryl, EDI-aldicarb, or EDI- 
carbofuran values exceeded the provisional tolerable daily intake 
(PTDI) or the acceptable daily intake (ADI) recorded from analysed data 
(Table 5). 

3.7.1.4. Pyrethroid pesticides. EDI of PY pesticides including cyper-
methrin, permethrin, cyhalothrin, deltamethrin, and bifenthrin were 
within the standard limit values (Table 6). 

Table 3 
Pyrethroid, and Carbamates residues levels in raw cow’s milk samples reported in research articles published since 2010.  

Refs. Location N Pyrethroid Carbamates 
Concentration (ng/g); Mean ± SD and/or range (Min-Max) and positive occurrence frequencies (%) 
cypermethrin permethrin Bifenthrin Cyhalothrin deltamethrin Carbaryl Aldicarb Carbofuran 

Bedi et al. (2015) India, Punjab 312 0.9 ± 5.0 
4.10% 

_ _ 0.8 ± 4.3 
4.50% 

0.5 ± 3.4 
2.20% 

_ _ _ 

Chandrakar et al. 
(2020) 

India, 
Chhattisgarh 

100 _ _ _ _ 7 ± 3 
(BDL-196) 
5% 

_ _ _ 

da Silva et al. 
(2014) 

Brazil, Parana 30 _ _ _ _ _ BDL BDL BDL 

Fagnani et al. 
(2011) 

Brazil, Agreste 30 _ _ _ _ _ 0.02 ±
0.06 
(0.01- 
0.33) 

0.02 ±
0.04 
(0.01- 
0.22) 

0.01 ±
0.01 
(0.01-0.04) 

Gill et al. (2020) India, Bangalore 216 1.20 ± 8.3 (_-76) 
5% 

0.31 ± 3.4 
(_-45) 
2% 

_ 0.11 ± 1.18 
(_-15) 
2% 

_ _ _ _ 

India, 
Bhubaneswar 

204 BDL 11.1 ± 74.2 
(_-650) 
5% 

_ 0.39 ± 4.07 
(_-50) 
2% 

_ _ _ _ 

India, Ludhiana 258 1.74 ± 21.4 
(_-340) 5% 

0.30 ± 2.8 
(_-32) 3% 

_ 0.62 ± 6.9 
(_-102) 3% 

_ _ _ _ 

India, Guwahati 270 0.39 ± 3.7 
(_-44) 3% 

1.80 ± 22.9 
(_-370) 4% 

_ 0.79 ± 8.3 
(_-120) 3% 

_ _ _ _ 

India, Udaipur 235 BDL 28.17 ± 172.3 
(_-1840) 10% 

_ 0.17 ± 2.6 
(_-40) 1% 

_ _ _ _ 

Jawaid et al. 
(2016) 

Pakistan, 
Hyderabad 

45 _ _ 4.7 (3-9) _ _ _ _ _ 

Lapierre et al. 
(2019) 

Chile, Los Ríos 1 _ BDL _ _ _ _ _ _ 
Chile, La 
Araucanía 

3 _ (BDL-13) _ _ _ _ _ _ 

Chile, Los Lagos 5 _ (BDL-14) _ _ _ _ _ _ 
Muhammad et al. 

(2012) 
Pakistan, 
Faisalabad 

200 85 ± 20 _ _ 380 ± 20 _ _ _ _ 

Sajid et al. (2016) Pakistan, 
Faisalabad 

25 29.9 ± 15 45 ± 15 19 ± 11 BDL 18 ± 3 _ _ _ 

ul Hassan et al. 
(2014) 

Pakistan, Punjab 150 227 (_-15400) 1235.00 1768.00 _ 210.00 _ _ _ 

_: Data not available, BDL: Below Detection Limit, N: Samples sizes. 
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Table 4 
EDI mean (ng/kg BW/day) and HQ and HI of pesticides in raw cow’s milk reported in research articles published since 2010.  

Refs. Location EDI HQ HI 
DDT HCHs Drins Endrin Endosulfan Heptachlor DDT HCH Drins Endrin Endosulfan Heptachlor  

Abusalma et al. (2014) Sudan, Gezira 5.09E+03 _ _ _ 5.52E+02 _ 5.09E-01 _ _ _ 3.03E-01 _ 0.81 
Arif et al. (2021) Pakistan, Lahore 1.23E+01 4.52E+00 5.51E+00 _ 3.61E+02 _ 1.23E-03 9.05E-04 5.51E-02 _ 6.02E-02 _ 0.11 

Pakistan, Lahrore 2.28E+01 5.90E+00 9.49E+00 _ 5.85E+02 _ 2.28E-03 1.18E-03 9.49E-02 _ 9.74E-02 _ 0.19 
Ashok Kumar et al. (2013) India, Palia Kalan 2.78E+02 2.90E+02 0.00E+00 _ _ _ 2.78E-02 5.81E-02 0.00E+00 _ _ _ 0.085 
Aydin et al. (2019) Turkey, Konya District 8.45E+01 _ 5.35E+01 _ 1.13E+02 8.10E+01 8.45E-03 _ 5.35E-01 _ 1.88E-02 8.10E-01 1.37 
Bedi et al. (2015) India, Punjab 3.84E+00 2.16E+00 _ _ 2.88E+00 _ 3.84E-04 4.32E-04 _ _ 4.80E-04 _ 0.001 
Bošnir et al. (2010) Croatia, Karlovac County 1.92 1.92E+03 _ _ 4.20 2.64 1.92E-04 3.85E-03 _ _ 7.00E-04 2.64E-02 0.03 
Bulut et al. (2011) Turkey, Afyonkarahisar _ 6.32E+02 1.05E+01 3.16E+01 6.71E+01 2.35E+00 _ 1.26E-01 1.05E-01 1.58E-01 1.12E-02 2.35E-02 0.42 
Chandrakar et al. (2020) India, Chhattisgarh 2.40E+01 _ _ _ _ _ 2.40E-03 _ _ _ _ _ 0.002 
Deti et al. (2014) Ethiopia, Lole 4.66E+02 _ _ _ 0.00E+00 _ 4.66E-02 _ _ _ 0.00E+00 _ 0.46 

Ethiopia, Gonde 4.90E+02 _ _ _ 0.00E+00 _ 4.90E-02 _ _ _ 0.00E+00 _ 0.049 
Ethiopia, Adami Tulu 2.23E+03 _ _ _ 1.74E+02 _ 2.23E-01 _ _ _ 2.89E-02 _ 0.25 
Ethiopia, Asendabo 7.64E+02 _ _ _ 2.82E+02 _ 7.64E-02 _ _ _ 4.70E-02 _ 0.12 

Díaz Pongutá et al. (2012) Colombia, San Jorge 2.13E+02 7.10E+02 1.39E+02 1.70E+02 _ 0.00E+00 2.13E-02 1.42E-01 1.39E+00 8.49E-01 _ 0.00E+00 2.39 
Colombia, Sinú Medio 1.65E+02 1.18E+03 3.33E+02 2.13E+02 _ 2.71E+02 1.65E-02 2.35E-01 3.33E+00 1.06E+00 _ 2.71E+00 7.36 
Colombia, Sabanas 1.55E+02 1.22E+03 3.62E+02 1.71E+02 _ 2.79E+02 1.55E-02 2.45E-01 3.62E+00 8.56E-01 _ 2.79E+00 7.52 
Colombia, Costanera 1.68E+02 2.12E+03 3.62E+02 1.68E+02 _ 3.49E+02 1.68E-02 4.24E-01 3.62E+00 8.40E-01 _ 3.49E+00 8.39 

Donia et al. (2010) Egypt, Gizeh 2.03E+02 3.48E+01 4.83E+01 1.16E-02 _ 9.47E-01 2.03E-02 6.96E-03 4.83E-01 5.80E-05 _ 9.47E-01 1.46 
Fagnani et al. (2011) Brazil, Agreste _ _ _ _ _ 0.00E+00 _ _ _ _ _ 0.00 0.00 
Gebremichael et al. 

(2013) 
Ethiopia, Asendabo 4.89E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.89E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.05 
Ethiopia, Jimma 8.67E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.67E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.087 
Ethiopia, Serbo 7.65E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.65E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.076 

Gill et al. (2020) India, Bangalore 1.27E+00 0.00E+00 _ _ 0.00E+00 _ 1.27E-04 0.00E+00 _ _ 0.00E+00 _ 0.001 
India, Bhubaneswar 3.60E+00 2.16E-01 _ _ 0.00E+00 _ 3.60E-04 4.32E-05 _ _ 0.00E+00 _ 0.001 
India, Ludhiana 5.76E-01 4.08E-01 _ _ 4.80E-01 _ 5.76E-05 8.16E-05 _ _ 8.00E-05 _ 0.001 
India, Guwahati 4.13E+00 1.82E+00 _ _ 2.98E+00 _ 4.13E-04 3.65E-04 _ _ 4.96E-04 _ 0.003 
India, Udaipur 1.56E+00 1.90E+00 _ _ 2.57E+01 _ 1.56E-04 3.79E-04 _ _ 4.28E-03 _ 0.007 

Gutiérrez et al. (2012) Mexico, Chiapas 5.20E+00 6.36E+01 2.62E+00 2.24E+00 3.39E+01 2.28E+00 5.20E-04 1.27E-02 2.62E-02 1.12E-02 5.64E-03 2.28E-02 0.079 
Gutierrez et al. (2013) Mexico, Hidalgo 9.18E-04 5.88E-03 4.42E-04 2.38E-04 3.81E-03 1.36E-03 9.18E-05 1.18E-03 4.42E-03 1.19E-03 6.35E-04 1.36E-02 0.021 
Hernández et al. (2010) Colombia, San Pedro 2.85E+03 _ 1.13E+03 3.70E+00 6.78E+02 0.00E+00 2.85E-01 _ 1.13E+01 1.85E-02 1.13E-01 0.00E+00 11.75 

Colombia, Casa Azul 1.31E+03 _ 2.80E+03 2.39E+03 1.17E+03 1.04E+00 1.31E-01 _ 2.80E+01 1.20E-02 1.96E-01 1.04E-02 28.35 
Colombia, Sucre 3.66E+03 _ 5.42E+03 2.30E+00 2.94E+03 1.45E+00 3.66E-01 _ 5.42E+01 1.15E-02 4.89E-01 1.45E-02 55.08 

Ishaq and Nawaz (2018) Pakistan, Sahiwal 3.60E+01 6.59E+00 5.82E+01 _ 1.53E+03 _ 3.60E-03 1.32E-03 5.82E-01 _ 2.55E-01 _ 0.84 
Jawaid et al. (2016) Pakistan, Hyderabad _ _ _ _ 6.59E+02 _ _ _ _ _ 1.10E-02 _ 0.01 
Kampire et al. (2011) Uganda, Kampala 8.42E+01 4.38E+01 1.99E+01 _ 3.37E+00 _ 8.42E-03 8.75E-03 1.99E-01 _ 5.61E-04 8.42E-03 0.22 
Kaushik et al. (2011) India, Haryana 8.81E+01 7.03E+01 0.00E+00 _ _ _ 8.81E-03 1.41E-02 0.00E+00 _ _ 8.81E-03 0.02 
Kotinagu and Krishnaiah 

(2015) 
India, Musi river belt 0.00E+00 0.00E+00 0.00E+00 _ 0.00E+00 _ 0.00E+00 0.00E+00 0.00E+00 _ 0.00E+00 _ 0.15 

Kuba et al. (2015) Poland, Slaskie 
voivodeship 

5.48E-01 _ _ _ _ _ 5.48E-05 _ _ _ _ _ 0.00 

Poland, 
Zachodniopomorskie 
voivodeship 

6.64E-01 _ _ _ _ _ 6.64E-05 _ _ _ _ _ 0.00 

Lapierre et al. (2019) Chile, Los Ríos _ _ _ _ _ _ _ _ _ _ _ _ 0.00 
Chile, La Araucanía _ _ _ _ _ _ _ _ _ _ _ _ 0.00 
Chile, Los Lagos _ _ _ _ _ _ _ _ _ _ _ _ 0.00 

Melgar et al. (2010) Spain, Northwest region _ _ _ _ _ _ _ _ _ _ _ _ 0.02 
Muhammad et al. (2012) Pakistan, Faisalabad _ _ _ _ 1.28E+03 _ _ _ _ _ 2.13E-01 _ 0.32 
Năstăsescu et al. (2020) Romania, Campina 1.67E+03 _ _ _ _ _ 1.67E-01 _ _ _ _ _ 0.16 

Romania, Ploiesti 2.02E+03 _ _ _ _ _ 2.02E-01 _ _ _ _ _ 0.20 
Romania, Valea Doftanei 1.05E+03 _ _ _ _ _ 1.05E-01 _ _ _ _ _ 0.10 

Nath et al. (2013) India, Patna 2.22E+01 _ _ _ _ _ 2.22E-03 _ _ _ _ _ 0.002 
Raslan et al. (2018) Egypt, Zagazig 5.29E+01 8.03E+01 _ _ _ _ 5.29E-03 1.61E-02 _ _ _ _ 0.02 

(continued on next page) 
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3.7.2. Hazard quotient (HQ) 
As mentioned above, quantitative non-carcinogenic risks are re-

ported as hazard quotients by comparing predicted pesticide intakes 
directly to toxicity values in the form of reference doses. The non- 
carcinogenic risk for raw cow’s milk consumers was determined by 
calculating HQ of: 1) OC including DDTs, HCHs, Drins, endrin, endo-
sulfan, and heptachlor, 2) OP including malathion, dimethoate, chlor-
pyriphos, profenofos, coumaphos, dichlorvos, methamidophos, ethion, 
parathion-methyl, 3) PY including cypermethrin, permethrin, bifen-
thrin, cyhalothrin, and deltamethrin, as well as 4) CB including carbaryl, 
aldicarb, and carbofuran (Tables 4, 6, 7). 

HQ of pesticide residues for adults was calculated based on the mean 
levels of the concentration of these pesticide residues obtained from the 
current data. It must be noted that if HQ of milk is less than 1, non- 
obvious risks are improbable to happen to the exposed population, 
while harmful impacts may happen to the exposed population if HQ is 
above 1 (Dadar et al., 2017; Fakhri et al., 2019; Rahmani et al., 2018). 

HQ values indicated that adult consumers were not exposed to any 
potential health risk through exposure to DDTs, HCHs, and endosulfan 
recorded in raw cow’s milk in 69 regions across the globe. For Drins, the 
HQ values exceeded 1 in 8 out of 38 (21%) regions in the world. The 
highest value was recorded in milk collected from Sucre region, 
Colombia. Also in Colombia, the HQ values of Drins were exceeding 1 in 
Casa Azul region (22.8), San Pedro region (11.33), Costanera region 
(3.6), Sabanas region (3.6), Sinú Medio region (3.33), and San Jorge 
region (1.38). An HQ value was also higher than 1 in Punjab region, 
Pakistan (33.40). The HQ value of endrin in 1 out of 29 regions (3.44%) 
that analysed raw cow’s milk samples was higher than 1 and that region 
was Sinú Medio in Colombia. 

The results of non-carcinogenic risks from exposure to pesticide 
residues through milk consumption indicate that raw cow’s milk 
collected in 3 out of 32 regions (9.37%) across the globe during the last 
decade was not safe for human consumption in terms of the amounts of 
heptachlor (HQ values >1; Table 4). The highest value was recorded in 
raw cow’s milk samples collected in Costanera region (Colombia). Be-
sides, it was observed that (HQ values <1) have no potential health risk 
to adults in the case of OP, PY, and CB pesticides. 

3.7.3. Hazard Index (HI) 
Table 4 summarizes the cumulative risk assessment (HI) values for 

the pesticides in raw cow’s milk samples during the last decade, related 
to adult consumption. Results show that raw cow’s milk intake repre-
sents a serious health risk for consumers in 10 out of 69 regions across 
the globe (14.50%). It can be seen that HI values ranged from 0 to 55.8. 
The highest HI value was recorded in Sucre region in Colombia. 

HI values were higher than 10 in 3 regions in Colombia, and 1 region 
in Pakistan. Moreover, they were between 1 and 10 in 6 out of 69 regions 
that were studied across the globe (Colombia -4 regions, Egypt -1 region 
and Turkey -1 region). These results show a high potential risk for 
human health in terms of residue ingestion. HI values were lower than 1 
in 59 out of 69 regions across the globe (85.50%), indicating that the risk 
of human exposure to pesticides via intake of cow’s milk was minimum 
in these regions. 

4. Concluding thoughts and recommendations 

Milk is an important and widely consumed food which is rich in 
macro- and micronutrients that play an important role in health pres-
ervation. While it affects positively human nutrient and energy uptake, 
the presence of pesticide residues could, however, counterbalance these 
benefits and negatively affect human health. 

After reviewing the relevant literature since 2010, it was concluded 
that pesticide residues were detected in raw cow’s milk samples in 14 
developing countries (Egypt, Colombia, Pakistan, Turkey, Uganda, 
Poland, Sudan, Ethiopia, India, Romania, Croatia, Mexico, Brazil and 
Chile) and one developed country (Spain). In addition, these countries Ta
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Table 5 
EDI mean (ng/kg BW/day) of OP, CB pesticides in raw cow’s milk reported in research articles published since 2010.  

Refs. Location Malathion Dimethoate Chlorpyriphos Profenofos Coumaphos Dichlorvos Methamidophos ethion Parathion- 
methyl 

Carbaryl Aldicarb Carbofuran 

Bedi et al. (2015) India, Punjab 9.60E-01 _ 2.04E+01 4.80E-01 _ _ _ 7.20E-01 _ _ _ _ 
da Silva et al. (2014) Brazil, Parana 9.42E+00 9.68E-01 _ _ 3.42E+00 _ _ _ _ 0.00E+00 0.00E+00 0.00E+00 
Donia et al. (2010) Egypt, Gizeh 0.00E+00 0.00E+00 _ 0.00E+00 _ _ _ _ _ _ _ _ 
Fagnani et al. (2011) Brazil, Agreste 1.29E-01 6.45E-02 _ _ 2.58E-01 3.87E-01 _ _ 0.00E+00 1.29E-01 1.29E-01 6.45E-02 
Gill et al. (2020) India, Bangalore _ _ 4.10E+00 2.26E+00 _ _ _ 2.52E+00 _ _ _ _ 

India, 
Bhubaneswar 

_ _ 3.12E+00 7.68E+00 _ _ _ 1.63E+00 _ _ _ _ 

India, Ludhiana _ _ 2.47E+01 1.87E+00 _ _ _ 1.92E+00 _ _ _ _ 
India, Guwahati _ _ 1.56E+01 6.00E-01 _ _ _ 3.50E+00 _ _ _ _ 
India, Udaipur _ _ 3.05E+01 7.44E-01 _ _ _ 2.45E+00 _ _ _ _ 

Jawaid et al. (2016) Pakistan, 
Hyderabad 

_ _ 2.95E+00 1.03E+01 _ _ _ _ _ _ _ _ 

Kotinagu and Krishnaiah 
(2015) 

India, Musi river 
belt 

_ 3.12E+02 0.00E+00 0.00E+00 _ _ _ _ _ _ _ _ 

Lapierre et al. (2019) Chile, Los Ríos _ _ _ _ _ _ 0.00E+00 _ _ _ _ _ 
Chile, La 
Araucanía 

_ _ _ _ _ _ 0.00E+00 _ _ _ _ _ 

Chile, Los Lagos _ _ _ _ _ _ 0.00E+00 _ _ _ _ _ 
Melgar et al. (2010) Spain, Northwest _ _ _ _ 3.30E+02 3.20E+01 _ _ 2.49E+01 _ _ _ 
Muhammad et al. (2012) Pakistan, 

Faisalabad 
_ _ 2.95E+00 _ _ _ _ _ _ _ _ _ 

Nath et al. (2013) India, Patna 4.85E+01 _ 3.84E+00 _ _ _ _ _ _ _ _ _ 
Sajid et al. (2016) Pakistan, 

Faisalabad 
_ _ 2.46E-01 6.39E+00 _ _ 0.00E+00 _ _ _ _ _ 

*ADI/PTDI (ng/g BW) 300000 2000 10000 30000 _ 4000 4000 2 3 8 3 1  

* Data from Codex Alimantarius commission (Codex Alimantarius commission, 2020), _: Data not available 

A
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total almost a third of the world’s population (>2 450 000.00 Thousand 
inhabitants), which point to the existence still of considerable risks for 
the presence of recalcitrant contaminants such as OCPs banned all over 
the world several decades ago. 

The most common found pesticide residues were from the OCs DDTs 
and Drins, from the OPs permethrin and bifenthrin, from the PYs ethion 
and coumaphos, and from the CBs carbaryl and aldicarb. While some 
pesticides such as DDT and HCH have been banned from use in devel-
oped countries, they are still used in many developing ones and there-
fore they are still detected at a high level in raw cow’s milk. High 
geographic variation was observed, and many regions appear as 
contaminated zones with high risks such as Punjab in Pakistan (× 3080 
> MRL and × 113 > MRL for Cypermethrin and Drins, respectively), 
Sand Pedro in Columbia (× 1090 > MRL and × 200 > MRL for endrin 
and Drins, respectively), and Gezira State in Sudan (× 109 > MRL 
DDTs). However, it is very difficult to assign this heterogeneity to a 
specific factor; it can depend on the intensity and/or the type of agri-
culture activities, and the presence of agrochemical companies. 

The exposure assessment using the EDI, HQ, and HI revealed that EDI 
values were higher than PTDI/ADI for Drins in 9 regions out of 38, for 
heptachlor in 3 regions out of 32 and for endrin in 1 region out of 29. In 
addition, HI was far above 1 in 10 out of the 69 studied regions across 
the globe, which indicates a significant health risk for the consumers. 

We recommend the adoption of more sustainable policies to reduce 
pesticide use and enhance collaboration between north-south countries 
to strengthen pesticide risk. Moreover, the development of eco-friendly 
alternatives for chemical pesticide use and the promotion of integrated 
pest management (IPM) strategies should be promoted. Dissemination 
and training programs for technical officers to inspect and monitor 
pesticide use should be developed. Finally, sanctions for non- 
compliance, unreasonable use or contamination of the environment 
must be firm for more effectiveness. 

The studied data in this systematic review showed the difficulty to 
understand the multifaceted aspect of food security with respect to 
cow’s milk consumption. Under this spectrum, the concepts of data 
actualization and continuous monitoring are necessary and recom-
mended for the evaluation of the potential adverse effects of pesticide 
residues on human and animal health. The monitoring of this large list of 
compounds (herbicides, fungicides and insecticides) requires the use of 
updated analytical methodologies supported by chromatography 
coupled with mass spectrometry in a wide resolution and capability 
configurations. Moreover, the development of eco-friendly alternatives 
for the conventional chemical inputs in agriculture is necessary in order 
to ensure its sustainability, profitability and the preservation of natural 
resources for future generations. 
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This work is part of the research activity carried out within the: i). 
ARIMNet2-BOVISOL (Coordination of Agricultural Research in the 
Mediterranean. EC FP7 project N◦618127; www.arimnet2.net)-BOVI-
SOL (Breeding and management practices of indigenous bovine breeds: 
Solutions towards a sustainable future) project funded by the Algerian 
Ministry of Higher Education and Scientific Research and Scientific 
Research and from the Directorate General for Scientific Research and 
Technological Development (DGRSDT). ii). “Dairy production: Optimi-
zation of production techniques, valorization and quality control” 
project funded by the Algerian Ministry of Higher Education and Sci-
entific Research, grant agreement no: D00L01UN240120180001. 

Data availability 

All data are mentioned in the body of the manuscript, tables, and 
figures. 

Ta
bl

e 
6 

ED
I m

ea
n 

(n
g/

kg
 B

W
/d

ay
) 

an
d 

H
Q

 o
f P

Y 
in

 r
aw

 c
ow

’s
 m

ilk
 r

ep
or

te
d 

in
 r

es
ea

rc
h 

ar
tic

le
s 

pu
bl

is
he

d 
si

nc
e 

20
10

.  

Re
fs

. 
Lo

ca
tio

n 
ED

I 
H

Q
 

cy
pe

rm
et

hr
in

 
pe

rm
et

hr
in

 
bi

fe
nt

hr
in

 
cy

ha
lo

th
ri

n 
de

lta
m

et
hr

in
 

cy
pe

rm
et

hr
in

 
pe

rm
et

hr
in

 
bi

fe
nt

hr
in

 
cy

ha
lo

th
ri

n 
de

lta
m

et
hr

in
 

Be
di

 e
t a

l. 
(2

01
5)

 
In

di
a,

 P
un

ja
b 

2.
16

E+
00

 
_ 

_ 
1.

92
E+

00
 

1.
20

E+
00

 
1.

08
E-

04
 

_ 
_ 

9.
60

E-
05

 
1.

20
E-

05
 

Ch
an

dr
ak

ar
 e

t a
l. 

(2
02

0)
 

In
di

a,
 C

hh
at

tis
ga

rh
 

_ 
_ 

_ 
_ 

1.
68

E+
01

 
_ 

_ 
_ 

_ 
1.

68
E-

04
 

G
ill

 e
t a

l. 
(2

02
0)

 
In

di
a,

 B
an

ga
lo

re
 

2.
88

E+
00

 
7.

44
E-

01
 

_ 
2.

64
E-

01
 

_ 
1.

44
E-

04
 

1.
49

E-
05

 
_ 

1.
32

E-
05

 
_ 

In
di

a,
 B

hu
ba

ne
sw

ar
 

0.
00

E+
00

 
2.

66
E+

01
 

_ 
9.

36
E-

01
 

_ 
0.

00
E+

00
 

5.
33

E-
04

 
_ 

4.
68

E-
05

 
_ 

In
di

a,
 L

ud
hi

an
a 

4.
18

E+
00

 
7.

20
E-

01
 

_ 
1.

49
E+

00
-0

3 
_ 

2.
09

E-
04

 
1.

44
E-

05
 

_ 
7.

44
E-

05
 

_ 
In

di
a,

 G
uw

ah
at

i 
9.

36
E-

01
 

4.
32

E+
00

 
_ 

1.
90

E+
00

 
_ 

4.
68

E-
05

 
8.

64
E-

05
 

_ 
9.

48
E-

05
 

_ 
In

di
a,

 U
da

ip
ur

 
0.

00
E+

00
 

6.
76

E+
01

 
_ 

4.
08

E-
01

 
_ 

0.
00

E+
00

 
1.

35
E-

03
 

_ 
2.

04
E-

05
 

_ 
Ja

w
ai

d 
et

 a
l. 

(2
01

6)
 

Pa
ki

st
an

, H
yd

er
ab

ad
 

_ 
_ 

2.
31

E+
01

 
_ 

_ 
_ 

_ 
2.

31
E-

03
 

_ 
_ 

La
pi

er
re

 e
t a

l. 
(2

01
9)

 
Ch

ile
, L

os
 R

ío
s 

_ 
0.

00
E+

00
 

_ 
_ 

_ 
_ 

0.
00

E+
00

 
_ 

_ 
_ 

Ch
ile

, L
a 

A
ra

uc
an

ía
 

_ 
2.

67
E+

01
 

_ 
_ 

_ 
_ 

5.
33

E-
04

 
_ 

_ 
_ 

Ch
ile

, L
os

 L
ag

os
 

_ 
2.

87
E+

01
 

_ 
_ 

_ 
_ 

5.
74

E-
04

 
_ 

_ 
_ 

M
uh

am
m

ad
 e

t a
l. 

(2
01

2)
 

Pa
ki

st
an

, F
ai

sa
la

ba
d 

4.
18

E+
02

 
_ 

_ 
1.

87
E+

03
 

_ 
2.

09
E-

02
 

_ 
_ 

9.
34

E-
02

 
_ 

Sa
jid

 e
t a

l. 
(2

01
6)

 
Pa

ki
st

an
, F

ai
sa

la
ba

d 
1.

47
E+

02
 

2.
21

E+
02

 
9.

34
E+

01
 

0.
00

E+
00

 
8.

85
E+

01
 

7.
35

E-
03

 
4.

43
E-

03
 

9.
34

E-
03

 
0.

00
E+

00
 

8.
85

E-
04

 
ul

 H
as

sa
n 

et
 a

l. 
(2

01
4)

 
Pa

ki
st

an
, P

un
ja

b 
1.

13
E+

03
 

6.
07

E+
03

 
8.

69
E+

03
 

_ 
1.

03
E+

03
 

5.
65

E-
02

 
1.

21
E-

01
 

8.
69

E-
01

 
_ 

1.
03

E-
02

 
A

D
I/

PT
D

I*
 

20
00

0 
50

00
0 

10
00

0 
20

00
0 

10
00

00
   

   
 

*
D

at
a 

fr
om

 C
od

ex
 A

lim
an

ta
ri

us
 c

om
m

is
si

on
 (

Co
de

x 
A

lim
an

ta
ri

us
 c

om
m

is
si

on
, 2

02
0)

, _
: D

at
a 

no
t a

va
ila

bl
e 

A. Boudebbouz et al.                                                                                                                                                                                                                           

http://www.arimnet2.net


Environmental Advances 9 (2022) 100266

16

Ethical statement 

None to be declared. 

CRediT authorship contribution statement 

Ali Boudebbouz: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Writing – original draft. Sofiane Boudalia: 
Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Writing – original draft. Meriem Imen Boussadia: 
Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Writing – original draft. Yassine Gueroui: Conceptuali-
zation, Writing – review & editing. Safia Habila: Conceptualization, 
Writing – review & editing. Aissam Bousbia: Funding acquisition, 
Project administration, Writing – review & editing. George K. Symeon: 
Funding acquisition, Project administration, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors gratefully acknowledge Pr. CHEMMAM Mabrouk for his 
pertinent comments on the manuscript. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.envadv.2022.100266. 

References 

Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C.O., Kala, S., Kryeziu, T.L., Ifemeje, J.C., 
Patrick-Iwuanyanwu, K.C., 2020. Pesticides, history, and classification. Natural 
Remedies for Pest, Disease and Weed Control. Elsevier, pp. 29–42. 

Abusalma, E., Elhassan, A., Errami, M., Salghi, R., 2014. Pesticides residues: endosulfan 
and DDT in cow’s milk in Gezira State, Sudan. Moroc. J. Chem. 2 (3), 125–135. 
https://doi.org/10.48317/IMIST.PRSM/morjchem-v2i3.1977. 
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Năstăsescu, V., Mititelu, M., Goumenou, M., Docea, A.O., Renieri, E., Udeanu, D.I., 
Oprea, E., Arsene, A.L., Dinu-Pîrvu, C.E., Ghica, M., 2020. Heavy metal and pesticide 
levels in dairy products: Evaluation of human health risk. Food Chem. Toxicol. 146, 
111844 https://doi.org/10.1016/j.fct.2020.111844. 

Nath, A., Vendan, S.E., Priyanka, J.K.S., Singh, C.K., Kumar, S., 2013. Carcinogenic 
pesticides residue detection in cow milk and water samples from Patna, India. Curr. 
Trends Biotechnol. Chem. Res. 3 (1), 1–7. 

Needham, L.L., Barr, D.B., Caudill, S.P., Pirkle, J.L., Turner, W.E., Osterloh, J., Jones, R. 
L., Sampson, E.J., 2005. Concentrations of environmental chemicals associated with 
neurodevelopmental effects in U.S. population. NeuroToxicol. 26 (4), 531–545. 
https://doi.org/10.1016/j.neuro.2004.09.005. 

Nougadère, A., Sirot, V., Cravedi, J.P., Vasseur, P., Feidt, C., Fussell, R.J., Hu, R., 
Leblanc, J.C., Jean, J., Rivière, G., Sarda, X., Merlo, M., Hulin, M., 2020. Dietary 
exposure to pesticide residues and associated health risks in infants and young 
children - Results of the French infant total diet study [Research Support, Non-U S 
Gov’t]. Environ. Int. 137 (105529), 8. https://doi.org/10.1016/j. 
envint.2020.105529. 

Ozcan, S., Aydin, M.E., 2009. Polycyclic aromatic hydrocarbons, polychlorinated 
biphenyls and organochlorine pesticides in urban air of Konya, Turkey. Atmos. Res. 
93 (4), 715–722. https://doi.org/10.1016/j.atmosres.2009.02.012. 
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One of the most comprehensive definitions of “agro-ecology” to date is “food system 

ecology”, and it aims to transform our food system by considering environmental issues 

(preserving and redeployment of biodiversity, developing climate-smart strategies (e.g. eco-

friendly alternatives to chemical pesticides), fighting against global warming and climate change 

effects, reduction of carbon footprint and greenhouse gas fluxes via the decrease in the use of 

conventional energies); social and societal (work on hunger eradication, gender issues and 

women’s empowerment) and health (ensure a healthy diet, to stop the development of chronic 

diseases such as metabolic disorders). Consequently, these strategies can be profitable and 

safeguard natural resources for future generations (Brini, 2021; IPCC, 2014; Martin et al., 2020; 

Wainwright, Glenk, Akaichi, & Moran, 2019). 

In the same way, ensuring healthy food without any risk for the consumer means 

assessing the harmlessness of all contaminants, especially chemicals (such as heavy metals, 

pesticide and drug residues, and migrants from packaging). Some of these molecules can 

potentially be toxic to animals and humans; because they are involved in developing several 

pathologies such as cancers, obesity, and neurological and behavioural disorders (Arisekar, 

Shakila, Shalini, Jeyasekaran, & Padmavathy, 2022; S. Cao et al., 2022; Zhang et al., 2022). 

In this current thesis, we tried to approach the “HEALTH” issue of the “food system 

transformation” through an assessment of milk safety. Identification and quantification of heavy 

metals in raw cow milk were made, and potential risks associated with milk consumption among 

different classes of consumers according to their age were assessed. 

At national level 

In northeast Algeria, we reported that the annual average temperature increased by 0.3 

0.001 °C.yr
-1

 between 1980 and 2018, and we predicted that future annual average temperature 

will rise by 1.18°C, 2.33°C, and 4.59°C from several scenarios between 2081-2100. Also, we 

revealed that between 1980 and 2018, annual precipitation decreased by 0.99 ± 0.24 mm.yr
-1

 and 

is expected to fall by 22.5 mm, 44.4 mm, and 95.2 mm between 1980 and 2000 and 2081-2100 

for different scenarios. The increase in air temperature and the decrease in precipitation were 

accompanied by an increase in cropland and a decline in pasture areas. From 1992 to 2005, 

agricultural cover grew by 90.3%. Between 1993 and 2009, the pasture area decreased by 53.7%. 

The distribution of high-quality foraging sites for livestock, particularly natural vegetation, has 
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been influenced by this rapid change in land usage (Publication in review). These results are in 

accordance with those reported by Zeroual et al. (2020); (2019), who have shown that predicted 

increased temperatures may further exacerbate droughts and water shortages, which will lead to 

an expansion of desert climate zone at the expense of the temperate and steppe climate zones by 

the end of the twenty-first century (2045-2100). 

In this thesis, to address the notion of “biodiversity redeployment and genetic resources 

protection”, we collected samples only from local cattle breeds previously characterised by our 

laboratory (Aissam Bousbia et al., 2021). The results showed that the average daily milk 

production was 4.13 ± 2.12 L/cow/day, with an acceptable physicochemical quality but poor 

bacteriological quality. Milk yield was very close to data reported by Yakhlef (1989), with 1400 

L/cow/year (≈ 4 L/ cow/day). However, they are higher than those recorded in Central Uganda 

(2.6 ± 0.19 L/cow/day) for indigenous cattle breeds (Nalubwama, Kabi, Vaarst, Smolders, & 

Kiggundu, 2016). Overall, considering the vulnerability of the study area to the changing climate 

conditions, it seems obvious that the exploitation of foreign breeds such as the Holstein breed is 

not the best adaptation strategy to climate change effects. Moreover, local cattle breeds seem to 

be the best adaptation practices.  Nevertheless, are locally bred cattle spared from pollution and 

contamination? 

To answer this question, we assessed heavy metals contamination in milk produced by 

local cattle breeds in northeast Algeria. The results of this study revealed that the concentrations 

of Pb, Cd and Cu in all analysed samples (100%) were more than their corresponding MRLs. In 

comparison, 82.95%, 42.04%, 15.90% and 5.68% of Zn, Fe, Cr and Ni samples exceeded their 

MRLs, respectively (Boudebbouz, Boudalia, Bousbia, et al., 2022), which in accordance with the 

data published previously in our laboratory in raw cow milk collected from foreign breeds (in 

intensive livestock system) in the same region (A Bousbia et al., 2019). 

We reported values of target hazard quotients (THQs) higher than 1 for Cd for infants in 

three scenarios (1, 2, and 3 servings of cow milk/day). Moreover, Cr THQ values were recorded 

higher than 1 for children in the high scenario (3 servings cow milk/day) and infants in the three 

scenarios (1, 2, and 3 servings cow milk/day). Except for adults with a low scenario (1 serving 

cow milk/day), all the THQs values of Pb were far higher than 1, indicating the greatest health 

risk for infants and children consuming 3, 2 or even 1 serving cow milk by day and for an adult 
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consuming 2 or 3 servings cow milk by day (Boudebbouz, Boudalia, Bousbia, et al., 2022). 

Hazard Index (HI) values were higher than 1, which indicates that the exposure level may cause 

adverse effects over a lifetime for all ages. HI for raw cow milk was largely driven by the Pb, Cr, 

and Cd THQs for all ages, while the highest HI values were recorded for infants and children, 

which is in agreement with data reported in Peru (Castro-Bedriñana, Chirinos-Peinado, Ríos-

Ríos, Machuca-Campuzano, & Gómez-Ventura, 2021) and China (Su et al., 2021). 

At international level 

In this thesis, we extracted and then analysed published data concerning the emerging 

contaminants (Heavy metals and pesticide residues) in raw cow milk across the globe. Moreover, 

the potential health risks of these pollutants to human health were assessed. The research strategy 

was based on published articles between 2010 and 2020 (regarding heavy metals levels) and 

2012-2021 (regarding pesticide residue) to identify and analyse the level of these contaminants 

in three different scientific databases (Science Direct, Scopus and PubMed) (Boudebbouz et al., 

2021; Boudebbouz, Boudalia, et al., 2022b). 

The reported results indicated that the levels of Cu and Fe in raw cow milk collected 

worldwide were higher than the maximum limit recommended by the US Food and Nutrition 

Board (Boudebbouz et al., 2021). However, Cd and Pb levels in cow milk were higher in 

developing countries and lower in developed countries, reflecting high strict regulations in 

developed countries. In addition, the exposure assessment indicates that the exposure to Fe and 

Al via milk consumption was safe for human consumption (Boudebbouz et al., 2021). 

Results of chapter 4 show that pesticide residues were recorded in raw cow’s milk 

samples in one developed country (Spain) and 14 developing countries (Egypt, Colombia, 

Pakistan, Turkey, Uganda, Poland, Sudan, Ethiopia, India, Romania, Croatia, Mexico, Brazil and 

Chile). In addition, results showed that some pesticides such as DDT and HCH had been banned 

from use in developed countries; they are still used and detected with a high concentration in 

many developing countries. The health risk assessment using the EDI, HQ, and HI indicates that 

EDI values were higher than PTDI/ADI for several pesticide residues in different areas in the 

world, especially in developing countries, which indicates a significant health risk for the 

consumers (Boudebbouz, Boudalia, et al., 2022b). Our reported results are in accordance with 

data published in several regions across the globe (Dong, Zhang, & Quan, 2020; Năstăsescu et 
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al., 2020; Parween, Ramanathan, & Raju, 2021; Taghizadeh et al., 2021; Zafeiraki, Kasiotis, 

Nisianakis, Manea-Karga, & Machera, 2022). 

Relationships between heavy metals and milk composition 

Here, using Spearman correlations tests, we looked for the relationship between heavy metal 

levels reported in northeast Algeria and raw cow milk components (lactose, protein, fat and 

Minerals) (Figure 4). Weak positive correlations were estimated for Pb-Lactose (0.31), Ni-

lactose (0.12), Cr-Fat (0.15), and Cd-MM and Cd-Fat (0.17 and 0.19, respectively) (Figure 4). 

 
Figure 4 Spearman correlation coefficient number between heavy metals and milk composition 

Contents of Pb and Ni in raw cow milk revealed low correlations with lactose. These 

findings are consistent with those of Zhou, Zheng, Su, Wang, and Soyeurt (2019) and 

Muhammad et al. (2009). The authors calculated regression coefficients of 4.09, 0.096, and 

0.023 for Pb, Cr, and Cd residues, respectively, in cow milk with respect to the milk fat 

percentage. However, an estimated weak positive correlation has been reported for Pb-protein, 
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Cr-protein, and Cd-lactose (Zhou et al., 2019). The presence of Cd and Pb in the milk could 

cause a significant rise in protein oxidation compounds such as dityrosine concentration and 

advanced oxidation protein products (AOPP). Moreover, contaminated milk with heavy metals, 

especially Pb and Cd, significantly dropped both antioxidant enzyme activities and lysozyme 

content (Grassi, Simonetti, Gambacorta, & Perna, 2022). Therefore, it is crucial to keep an eye 

out for these harmful substances in milk because they can harm consumers’ health directly 

through ingestion and indirectly through the degradation of milk stability. 
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CONCLUSION 
 

At the national level, the results of the study revealed a high concentration of heavy 

metals, especially Pb, Cd and Cu, in all farms in the northeastern region of Algeria, even in areas 

considered unpolluted or not exposed to pollution sources (far from roads, mines and industry). 

According to the task risk quotient (TRQ) values, the levels of Ni, Zn, Cu and Fe did not affect 

consumers’ health. However, the results suggest that there may be a risk, particularly for infants 

exposed to Pb. Despite the risk of milk contamination with heavy metals, acceptable 

physicochemical quality was recorded. However, the poor bacteriological quality and low milk 

production are also considered problems to be solved to improve the local cattle breed livestock, 

which we think is a very interesting strategy to fight against global warming in this vulnerable 

area. 

The preservation of Algerian cattle breeds resources and the fighting against the 

propagation of emerging contaminants (heavy metals and pesticides) may be crucial for agro-

ecology development, and it can be provided in two phases: 

 Implementing selection and genetic development activities to improve the indigenous 

cow breeds’ productivity and profitability. Consequently, smallholder farmers may 

benefit from this since it can give them a fair and steady income and comfortable 

working conditions. Other activities, such as promoting women’s empowerment, 

formulating pertinent policy concerns, and creating suitable capacity-building initiatives 

for various stakeholders, help fight against climate change’s effects and can contribute 

significantly to local economies and social integrity. 

 The development of more environmentally friendly products and regulations can decrease 

the use of synthetic pesticides and, consequently, protect human health. 
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1 Introduction
Traditional products are considered as a very important way 

to keep the regional and national identity of peoples. We meet 
traditional recipes handed down from generation to generation, 
challenging time and space. Among these products, traditional 
cheeses are one of the food product that have become the image 
of different countries or region of origin, they differ from each 
other by their making process, ripening time (if applied), type 
of milk used, texture, color, flavor, coagulation type (enzymatic 
and/or acid)…etc. Among these traditional cheeses we can cite 
“Klila” chesses produced in Algeria (Leksir et al., 2019; Leksir & 
Chemmam, 2015); “Roquefort”, “Cheddar”, “Emmental”, “Camembert”, 
“Parmesan” and “Picodon” produced in France (Bertozzi & 
Panari, 1993; Leclercq-Perlat et al., 2019; Quetier et al., 2005); 
“Maraj´ o” cheese, “Manteiga”, “Coalho”, “Caipira”, “Canastra” 
and “Minas” cheeses produced in Brazil (Moraes et al., 2018; 
Sant’Anna et al., 2017; Kamimura et al., 2019); “Quesillo” cheese 
produced in Argentine (Oliszewski et al., 2007); “Vlasina” cheese 
produced in Serbia (Terzic-Vidojevic et al., 2013); “Anevato” 
cheese produced in Greece (Hatzikamari et al., 1999); “Chihuahua” 
cheese produced in Mexico (Sánchez-Gamboa et al., 2018) and 
“Babia-Laciana” cheese produced in Spain (Franco et al., 2003).

Unlike other countries, in Algeria traditional cheeses are few 
in number but not fully enumerated and as little been studied 
(Dubeuf et al., 2010); about ten types of cheese are known in 
different regions of the country (Aissaoui Zitoun et al., 2011). 
Among these cheeses are “klila”, “bouhezza”, “mechouna” and 
“madghissa”, in the region of Chaouia, “takammérite” and “aoules” 
in the south, “igounanes” in the region of Kabylie (Aissaoui 
Zitoun et al., 2011, 2012; Ben Danou, 1929; Benamara et al., 
2016; Benkerroum, 2013; Khoualdi, 2017; Leksir & Chemmam, 
2015; Licitra et al., 2019; McSweeney et al., 2017; Medjoudj et al., 
2017a, b; Ramalho Ribeiro et al., 2006).

Unfortunately, several of these cheeses are endangered, 
for various reasons including the unavailability of fodder, 
rural exodus and changing dietary habits. We do not know the 
future of these products, but we must do everything possible 
to know them, maintain their existence and encourage their 
manufacture. The preparation processes of these cheeses come 
from earlier generations and have been passed down from 
generation to generation (Leksir et al., 2019). So, registration 
of different information about traditional cheeses is part of the 
preservation of a nation’s culinary heritage and culture which 
must be well characterized and protected. Also, the certification 
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of a geographical indication “Protected Designation of Origin 
PDO) for these artisanal cheeses may encompass an essential 
milestone for adding value and, an economic resource for farmers 
(Kamimura et al., 2019).

“Bouhezza” cheese has long been known in the Chaouia 
region of eastern Algeria. It is made from goat, sheep, cow milk 
or mixture (Marino et al., 2012; Medjoudj et al., 2017a, b) and 
considered not only as a food product but also as an integral 
part of “Chaouias” people life. The manufacture of “Bouhezza” 
has the particularity of involving coagulation, draining, salting 
and refining simultaneously. The cheese is obtained after 
transformation of the “Lben” in a “skinbag” or a “Chekoua” made 
of goatskin previously treated with salt and juniper (Aissaoui 
Zitoun et al., 2011). “Chekoua” serves, at first sight, container 
and media filtering for sewage (Aissaoui Zitoun et al., 2011, 2012; 
Chaker, 1986). Outsides, these elements, it is scientifically poorly 
studied. The current study deals with the traditional preparation 
of “Bouhezza” by the people of “Chaouias” (traditional making 
diagram) and at the same time explore the effect of the type of 
raw milk of three species (cow, goat and sheep) on the yield 
and organoleptic characteristics of the fresh “Bouhezza” cheese.

2 Materials and methods
2.1 Study area and sampling plan

The samples are collected from four areas located in the in 
North-East of Algeria (Guelma, Souk Ahras and Tébessa) and in 
the center of Algeria: (Djelfa) (Figure 1). A total of 27 samples of 
raw milk of three species (goat, cow, and sheep) were collected 
and used for cheese making. From each farm, about 1.5-2 L 
were taken in sterile glass bottles and placed immediately in 
a cooler, then transported to the laboratory, where they are 
stored at 4 °C until analysis and cheese making. All bottles 
are previously autoclaved at a temperature of 121 °C, under a 
pressure of 1 bar for 15 minutes.

The vials are filled from a container of mixing milk, respecting 
the Good Laboratory Practices (GLP), and the rules of asepsis 
(disinfection of the hands). In order to take account of the real 
field conditions, no conservative was added. Total volumes 
of 20-50 mL from each sample were collected for microbiological 
physicochemical analysis.

2.2 Raw milk analysis

Physicochemical and bacteriological analysis

For physicochemical analysis, pH was measured using a pH 
meter Adwa, AD1000 and acidity was determined according to 
the method described by Tadjine et al. (2019). Freezing point, 
conductivity, fat content, protein content, lactose content, 
mineral content and vitamins of milk were measured with a 
Lactoscan milk analyzer (Milkotronic LTD Europe) according 
to the manufacturer’s instructions.

For bacteriological analysis, samples preparation and 
dilutions were performed according to the recommendations 
of the International Dairy Federation (1991): 1) The Total 
Mesophilic Aerobic Flora (TMAF) was enumerated using Plate 
Count Agar (PCA) and incubated at 30 °C for 72 h; 2) The Total 
Coliforms and Fecal Coliforms were determined using Violet Red 
Lactose Bile agar (VRBL) incubated at 37 °C for total coliforms, 
and 44 °C for fecal coliforms; 3) Sulphite Reducing Clostridium 
was determined using enrichment method in a liquid medium; 
4) The enumeration of Staphylococci suspected pathogens was 
conducted using a selective medium (Chapman) and incubated 
at 37 °C for 24 to 48 hours. A positive culture of Staphylococci 
is indicated by the formation of a black precipitate surrounded 
by a white halo; 5) For Salmonella, two mediums were used 
to enumerate the colonies: Selenite-Cystine for enrichment 
at 37 °C for 12 h, and SS medium (Salmonella-Shigella) for 
isolation at 37 °C for 24 h. Salmonella appears like colorless and 
transparent colonies with or without a black center of small size 
(2 to 4 mm in diameter).

Figure 1. Location map of the study area. Milk samples are collected from four areas located in the North East of Algeria (Guelma, Souk Ahras 
and Tébessa) and in the center of Algeria: (Djelfa). Raw milk of three species (goat, cow, and sheep) were collected and used for “Bouhezza” 
cheese making.
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2.3 Data collection about the traditional preparation of 
“Bouhezza”

A household survey focused on group discussion was 
performed in this study (Ghosh et al., 2014; Leksir et al., 2019). 
The present documentation of “Bouhezza” preparation is based on 
the questionnaires and insight observation from farmers. A total 
of 45 people including producers, sellers, and consumers were 
involved in the interviews and discussions, after taking their prior 
consent. The survey was conducted through face-to-face interaction 
to either heads or knowledgeable adults of households. During 
the data collection on “Bouhezza”, especially while conducting 
the interviews, observations were made and the comments of 
responders and other people were noted.

The research protocol for the sensory study and the household 
survey have been developed and validated by the ethics committee 
of the University of Guelma-Algeria.

2.4 Cheese making

The raw milk is left at room temperature, until its spontaneous 
coagulation that takes 24 to 72 hours depending on the seasonal 
temperature. This curdled milk by natural fermentation is 
called “Rayeb” (or Raïb). Then “Rayeb” must be churned 
for 30 to 40 minutes to make the “Lben” in the the “Chekoua”. 
The addition of lukewarm water to the “Raïb” (about 10% (v/v)) 
makes it possible to reduce the temperature to the proper level 
to collect the grains of butter. After partial extraction of the 
traditional butter (Zebda Beldia), one obtains a thick liquid, the 
buttermilk named “Lben”.

After thorough conversation and field observation, “Bouhezza” 
preparation stretches over a period of eight days, and it can be 
broadly divided into the following steps: salting is done in the “Lben”. 
The added amount is an average of 1 tablespoon/L. The “Chekoua”, 
in which the “Lben” is introduced (a quantity of 3.6 to 3.8 L) 
is suspended in a ventilated place and in the shade. Once the 
cheese is refined, the raw milk (100 mL/4 L) is added to adjust 
the acidity and salinity of the finished product. Cheese was 
stored in pottery jars/ glass or food containers for a few weeks 
at a temperature that varies between 4 °C and 8 °C.

2.5 Real yields in cheese, dairy whey and butter

After each series of production, the amount of whey, butter, 
and cheese is measured in order to calculate the yield using the 
Equation 1 (Tadjine et al., 2019).

( ) ( )
( ) ( )

           /

     100  /100 

Real yield of cheese butter or whey The weight of cheese obtained kg

volume of milk L in kg L

=

×
 (1)

2.6 Sensory analysis

In order to obtain basic information about the 
sensory characteristics of “Bouhezza” cheese, a consumer 
acceptability test was conducted using 9 point unstructured 
hedonic scale (Boudalia et al., 2016b; Oliveira et al., 2017; 
Ruvalcaba-Gómez et al., 2020); a randomized panel consisting 
of 20 students, and teachers-researchers of both sexes from 
University of 8 Mai 1945 Guelma: 91% of people are under 
the age of 30 years old, and 9% between 30 to 45 years old. 

The following five sensory characteristics were selected 
for evaluation, overall appreciation, taste, texture, smell 
and color. They were scored from 1 (dislike extremely) 
to 9 (like extremely). The overall assessment is requested at 
the beginning of the questionnaire to get as close as possible 
to the real conditions of purchase and to prevent the consumer 
from decomposing the sensations. Additional information 
on the sex, age and frequency of consumption of cheeses is 
also required to enable the characterization of the sample 
population interviewed.

Cheese is considered acceptable (from a hedonic point 
of view) if at least 50% of our participants give a score greater 
than or equal to 6 (likes slightly) (Conti-Silva  et  al., 2011; 
Volpini-Rapina et al., 2012).

Prior to the start of testing, all participants spread to 
questions about possible food allergies to cheese components 
(milk protein). Then, the cheese (40 g), which was freshly 
prepared, placed in plastic plates, then presented to the panelist 
for tasting. Participants answered questionnaires (Sęczyk et al., 
2016). The questionnaires duly completed by the tasters were 
removed at the end of the evaluation and the data was organized 
and processed.

The research protocol for the sensory study and the household 
survey have been developed and validated by the ethics committee 
of the University of Guelma-Algeria.

2.7 Statistical analysis

The results of the physicochemical analysis, cheese yield, as 
well as the results of the sensory analysis, are expressed in the form 
of means ± SEM (Standard Error Mean). The differences between 
the different parameters are the subject of an analysis of variance 
(ANOVA) followed by a comparison of means (Dunnet test or 
Tukey test) when the conditions of normality and homogeneity 
of the variances are respected (test Kolmogorov-Smirnov), and 
possibly a non-parametric analysis of variance (Kruskal-Wallis). 
For bacteriological analyses, results were expressed by the 
presence or absence of germs. All the colonies were counted as 
Colony Forming Units per mL of milk (CFU/mL) (International 
Dairy Federation, 1991).

For sensory analysis, statistical analysis of the data was 
analyzed on the basis of a two-factor analysis of variance 
(ANOVA) “hedonic score vs. cheese, sex”, considering “sex” and 
“cheese” as independent variables. “sex × cheese” interactions 
are also reported.

The data was processed using Minitab software (Minitab, 
Ltb., United Kingdom, Version 16). The minimum threshold of 
significance retained is p < 0.05.

3 Results and discussion
3.1 Physicochemical and bacteriological qualities of raw milk

Results from physicochemical and bacteriological analyses 
of raw milk for the three species presented respectively in 
Tables 1 and 2 satisfy the standard of analyzes criteria (Food 
and Agriculture Organization of the United Nations, 2002).
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Milk density is between 1.03 ± 6.33; 1.02 ± 7.44 and 
1.03 ± 4.08 kg/m3 for cow’s milk, goat’s milk, and sheep’s milk, 
respectively. In addition, a significant difference is recorded 
between the milk of the three species, where the density of goat’s 
milk is the lowest (p < 0.05).

Fat content recorded is 3.28% and 3.23% for cow’s milk 
and goat milk respectively. These results are very close to those 
cited in the literature (3.7% and 4.1% for cow’s milk and goat’s 
milk, respectively) (Boudalia et al., 2016a; El Galiou et al., 2015). 
However, a very lean fat content was recorded for sheep’s milk 
(1.82%). This significant difference (p < 0.05) is not consistent 
with data from the literature, where sheep’s milk is considered as 
being a fatty milk (Fat content: 7.9%) (Park, 2006; Park et al., 2007). 
However, these results are probably due to the feed abundance, 
Hamidi et al. (2018) found lower fat content in a semiarid region 
of Algeria where plant abundant and richness is lower.

Results from dry degreased extract (TDE) shown that 
goat’s milk contains less TDE (6.61%); this result is much 
below the standard (13.4%). In the same way, TDE results 
recorded in cow’s milk (8.55%) and sheep’s milk (9.77%) 

Table 1. Physicochemical qualities of the analyzed samples (N = 27 samples).

Parameters Species Mean SEM CV (%) Min Max
Fat content (%) Cow 3.28a 0.08 7.18 3.00 3.58

Goat 3.23a 0.09 8.36 2.81 3.80
Sheep 1.82b 0.08 13.44 1.57 2.30

Protein content (%) Cow 3.13b 0.20 18.69 2.44 4.15
Goat 3.05b 0.32 31.48 1.98 4.74
Sheep 4.63a 0.05 2.93 4.49 4.87

Lactose (%) Cow 4.70a 0.29 18.65 3.67 6.23
Goat 2.97b 0.29 29.33 1.89 4.50
Sheep 4.30a 0.07 4.63 3.90 4.62

Minerals and Vitamins (%) Cow 0.70a 0.04 18.69 0.55 0.93
Goat 0.50b 0.05 28.85 0.32 0.75
Sheep 0.73a 0.01 3.31 0.70 0.77

Dry Degreased Extract (%) Cow 8.55a 0.53 18.60 6.67 11.33
Goat 6.61b 0.65 29.28 4.21 10.01
Sheep 9.77a 0.10 3.13 9.40 10.28

Added Water (%) Cow 3.62b 2.11 174.46 0.00 18.44
Goat 25.79a 7.24 84.21 0.00 56.53
Sheep 0.00b 0.00 0.00 0.00 0.00

pH Cow 6.48a 0.06 2.93 6.00 6.63
Goat 6.63ab 0.03 1.18 6.52 6.78
Sheep 6.71b 0.08 3.65 6.26 7.05

Density (mg.cm-3) Cow 1031.90a 2.11 0.61 1024.90 1042.80
Goat 1022.7b 2.48 0.73 1013.00 1035.50
Sheep 1033.10a 1.36 0.39 1023.20 1035.90

Freezing point (°C) Cow -0.55b 0.04 -20.57 -0.75 -0.42
Goat -0.38a 0.04 -33.37 -0.58 -0.23
Sheep -0.56b 0.01 -4.74 -0.60 -0.52

Conductivity (μS.cm-1) Cow 4.94a 0.25 15.15 4.03 5.82
Goat 4.55a 0.19 12.18 3.59 5.12
Sheep 3.87b 0.06 4.81 3.60 4.13

SEM: Standard Error Mean; CV: coefficient of variation; Max: maximum; Min: minimum. Means which are denoted by different letters (a, b) indicate significantly different mean 
values between milk from the here species and for the same parameter (Fat, protein and lactose, minerals and vitamins, Dry Degreased Extract, Added Water, pH, Density, Freezing 
point and Conductivity).

Table 2. Bacteriological qualities of the analyzed samples (N = 27 samples).

Flores (UFC/mL) Species Mean ± SEM Standard (CFU/mL)
TMAF (105) Cow 1.13 ± 1.26 105

Goat 0.87 ± 1.05 105

Sheep 1.37 ± 1.66 105

F. Col. (103) Cow 1.03 ± 1.65 103

Goat 0.56 ± 0.84 103

Sheep 1.12 ± 1.33 103

T. Col. (103) Cow 1.02 ± 1.45 103

Goat 0.96 ± 1.01 103

Sheep 1.15 ± 1.07 103

Sulphite reducing 
Clostridium

Cow 27 ± 15.60 50
Goat 13 ± 18.35 50
Sheep 51 ± 11.30 50

S. aureus Cow Absence Absence
Goat Absence Absence
Sheep Absence Absence

Salmonella spp. Cow Absence Absence
Goat Absence Absence
Sheep Absence Absence

TMAF: Total Mesophilic Aerobic Flora; T. Col.: total Coliforms; F. Col.: fecal Coliforms; 
SEM: Standard Error Mean.
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remain relatively low compared to the standards (12.8% 
and 18.3% for cow’s milk and sheep’s milk respectively) (Food 
and Agriculture Organization of the United Nations, 2002; 
Renhe  et  al., 2019). The lactose content is (2.97%, 4.70% 
and 4.30%) in goat, cow and sheep respectively (p < 0.05, 
Table 1). The results obtained are slightly lower than data 
from the literature (Renhe et al., 2019).

Total protein (Table 1) indicates that the raw cow’s milk 
is between 2.75 to 4.15% [27.5-41.5 g/L]. For goat and sheep 
respectively, the protein level of 3.05% and 4.63% was recorded. 
These rates are in line with the norms for goat’s milk. In sheep, 
protein level remains higher than the protein content in milk 
from the other two species (p < 0.05).

Conductivity rate is 4.94 ± 0.75 mS/cm; 4.55 ± 0.55 mS/cm; 
3.87 ± 0.19 mS/cm for cow, goat and sheep’s milk respectively. 
These values were in good agreement with the data published by 
Park et al. (2007). The pH recorded is 6.48 ± 0.19, 6.63 ± 0.08, 
6.71 ± 0.24 for cow, goat and sheep milk, respectively. These 
values are consistent with the standards (Park, 2006). Also, a 
significant difference is recorded between the pH of cow’s milk 
and that of the sheep (p < 0.05), where cow’s milk appears to 
be more acidic (Table 1).

Minerals and Vitamins (%) level observed were 0.70 ± 0.13%; 
0.50 ± 0.14%; 0.73 ± 0.02% for cow’s, goat’s and sheep’s milk, 
respectively. A significant difference was found between 
the level of minerals and vitamins (%) in cow’s and sheep’s 
milk vs. goat’s milk where a goat’s milk seems to be less 
rich (Table 1).

The freezing point recorded was -0.55 ± 0.11 °C; 
-0.38 ± 0.13 °C; -0.56 ± 0.03 °C for cow, goat and sheep milk 
respectively (Table 1). A significant difference was recorded, 
where goat’s milk has a higher freezing point compared to the 
other two types of milk (cow and sheep). The values of cow’s 
milk and sheep’s milk are consistent with standards; however, the 
results of goat’s milk are relatively lower compared to standards 
(Food and Agriculture Organization of the United Nations, 
2002; Renhe et al., 2019). This difference in physicochemical 
qualities for goat milk may be due to a wetting of six samples 
of goat’s milk (6/9).

For bacteriological analysis, counting of aerobic mesophilic 
flora for raw milk samples showed an average microbial load 
of 1.13 × 105; 0.87 × 105; 1.37 × 105 CFU/mL for cow, goat 
and sheep milk respectively. These values consistent with 
the results of raw cow milk gathered in Guelma region in the 
northeastern of Algeria (Boudalia et al., 2016a), and who have 
been a satisfactory quality of raw milk in light of standard 
(105 UFC/mL). The sulphite reducing Clostridium was less 
present with low concentrations in the samples analyzed for 
the three species. The averages of the enumerated bacteria 
for cow, goat and sheep’s milk are <50 CFU/mL. Unlike 
studies of Ghazi & Niar (2011), Hamiroune  et  al. (2014) 
and Bachtarzi et al. (2015) in other regions in Algeria, no 
Staphylococcus aureus contamination was recorded. These 
results provide that the hygienic quality of the milk of the 
three species is very satisfactory and suitable for consumption 
or processing.

3.2 Data collection about the traditional preparation of 
“Bouhezza”

A survey was conducted among the local people of several provinces 
in the northeastern of Algeria to understand the traditional process 
and knowledge of “Bouhezza” preparation. This survey permitted to 
identify a common procedure for the “Bouhezza” cheese production. 
This procedure is schematically represented in Figure 2.

“Bouhezza” was traditionally the product of the processing 
of goat and sheep milk, but the current trend seems to be 
towards the use of cow milk (Aissaoui Zitoun et al., 2011, 2012; 
Licitra et al., 2019; Medjoudj et al., 2017a, b).

The cheese is obtained after transformation of the “Lben” 
in a “Chekoua” made of goatskin previously treated with salt 
and juniper (Aissaoui Zitoun  et  al., 2011). Draining, salting 
and refining “Bouhezza” are performed simultaneously in the 
“Chekoua”. During the ripening period, “Lben” and milk are 
added to the contents of the “Chekoua”.

In our study, nine manufacturing experiments were carried 
out via the traditional diagram and for ten weeks. During each 
experiment, “Chekoua” received each three-day an amount 
of 1.5 L of salted “lben” (25 g of salt per L). At the end of the 
manufacturing (for about 1 to 1.5 last weeks) and to adjust 
organoleptic characteristics of the “Bouhezza” cheese (salt 
and acidity), additions of whole raw milk were done. In this 
study, the additions of fresh whole milk were perused until the 
tenth week to observe eventual evolutions in this case. During 
manufacturing, the “Chekoua” was suspended in an aerated room 
and daily washed and scraped on the external face (Figure 3).

Figure 2. Illustrative global traditional diagram of the manufacturing 
processes of “Bouhezza” cheese-making. “Bouhezza” is obtained after 
transformation of the “Lben” in “Chekoua” made of goatskin previously 
treated with salt and juniper. Draining, salting and refining of cheese 
are performed simultaneously in the “Chekoua”.
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Figure 3. “Bouhezza” processing steps: After spontaneous coagulation of raw milk at room temperature which it takes 24 to 72 hours depending 
on the seasonal temperature, the curdled milk called “Rayeb” (or “Raïb” was obtained. A farmer woman use “Chekoua” or “skinbag” made of 
goatskin previously treated with salt and juniper to transform the “Raïb” (a quantity of 3.6 to 3.8 L) into “Lben” by churning for 30 to 40 minutes. 
During this step, the addition of lukewarm water to the “Raïb” (about 10% (v/v)) makes it possible to reduce the temperature to the proper level 
to collect the grains of butter. Extraction of traditional butter (Zebda Beldia) and salt adding (1 tablespoon/L) is realized at this stage (a) and (b). 
(c), (d) and (e) cheese draining; this step is carried out in “Chekoua”. However, it can also be done in cloth bags to facilitate sewage. Raw milk 
(100 mL/4 L) can be added to adjust the acidity and salinity of the finished product. (f), (g) and (h) recovery of “Bouhezza” cheese is carried out 
after the draining step. (i), (j) and (k) “Bouhezza” Cheese is stored in pottery jars/ glass or food containers for a few weeks at a temperature that 
varies between 4 °C and 8 °C. People generally take it after lunch and dinner.
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3.3 Cheese yields analysis

Figure 4 show the quantities of dairy products (whey, butter 
and cheese) following the transformation of milk from three 
species into “Bouhezza” cheese. Although the initial volume of 
milk used in cheese making is almost the same (no significant 
difference), a significant difference was recorded after processing 
in terms of i) volume of whey harvested after draining. This 
volume is greater than three liters for all the milks except for 
sheep’s milk, which gave the lowest volume (p < 0.05); ii) butter 
quantity manufactured after churning which is around 0.24 kg 
for sheep’s milk and 0.15 kg for cow’s and goat’s milk (p < 0.05); 
iii) “Bouhezza” quantity and cheese yield, indeed sheep’s milk 
seems to be the most efficient in terms of cheese yield (p < 0.05) 
(Figure 4).

“Bouhezza” yield is an economically relevant variable 
which is influenced by different factors such as milk quality 
and cheese-making methods (Lucey & Kelly, 1994). Our results 
showed that there was an interspecific difference in cheese 
yield between cows, goats and sheep. While some studies show 
that cheese yield is higher in cows than goat (Rasheed et al., 
2016), our study and others show the opposite (Hamidi et al., 
2018; Mallatou & Pappa, 2005). Different factors might 
produce this interspecific difference, including those related 
to the milk composition and quality such as genetic variants 
of casein, fat and protein (Banks  et  al., 1981; Fenelon & 
Guinee, 1999; Verdier-Metz et al., 2001), seasonal variations 
(Sánchez-Gamboa et al., 2018), microbial counts and diversity 
(Vladimír et al., 2020) and cheese-processing methodology 
(Lawrence, 1993). In our study, “Bouhezza”-processing 
methodology and season are the same, however, we found 
higher fat and protein content in goat compared to cow milk, 

which probably contributed to the increase in cheese yield 
(Lucey & Kelly, 1994). In sheep milk, we found higher larger 
casein micelle size, which affect their renneting properties and 
coagulation time. Also, the higher casein content n, which 
functions as a chelator of divalent (or higher valence) ions, 
is associated with higher content of those mineral contents 
than in cow, and goat milk. The average fat globule size is 
smallest (<3.5 μm) in sheep milk followed by goat and cow 
milk. Therefore, cheese yield per volume of milk is the highest 
among ruminant milk (Silanikove et al., 2016).

3.4 Sensory analysis of “Bouhezza” cheese

The sensory evaluation scores are shown in Table 3 and Figure 5. 
From our panelist 50% are women, they are between 18 and 30 years 
old, and 95% of them consume cheese at least once a week. 
“Bouhezza” cheese from cow milk had a hedonic score greater 
than or equal to 5 for the 5 descriptors (overall appreciation, 
taste, texture, smell and color).

Panelists determined that “Bouhezza” cheese is accepted 
except “Bouhezza” from goat’s milk, in which the hedonic 
note is less than 5. Furthermore, the sensory acceptance of 
the product tested in this study is very similar to that found 
by Dal Bello et al. (2017) for fresh cheese from raw cow milk. 
Also, from literature, goat and sheep cheese are not preferred 
by large proportion of people which are not appreciate a 
strong goaty or sheepy aroma, even though they are not 
very familiar with these aromas (Ryffel et al., 2008). In the 
same way, Costa et al. (2015) have evaluated the acceptance 
of fermented cow’s and goat’s milks. Results have shown 
that fermented cow’s milk was well accepted compared to 
fermented goat’s milk.

Figure 4. “Bouhezza” cheese yield analysis from cow’s, goat’s and sheep’s milk collected in the regions of Guelma, Souk Ahras, Tebessa and Djelfa 
(n= 9/species). Results are expressed on average ± SEM. The letters on the diagrams show significant differences between each milk for the same 
parameter (p < 0.05) (One-way ANOVA, Tukey in post-hoc).

Table 3. Hedonic scoring test for “Bouhezza” cheese (with 5 descriptors).

Descriptors Global appreciation Taste Texture Odor Color

Hedonic note
Cow 5.90 ± 0.81 5.25 ± 0.87 6.25 ± 0.82 7.75 ± 0.78 6.45 ± 0.86
Goat 4.75 ± 0.90 4.00 ± 0.76 4.60 ± 0.71 7.60 ± 0.72 5.10 ± 0.92
Sheep 5.50 ± 0.65 4.65 ± 0.76 4.55 ± 0.72 7.70 ± 0.64 5.10 ± 0.64
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4 Conclusions
In summary, “Bouhezza” cheese occupies a very important 

socio-economic place established in the rural and peri-urban 
environment. It is a fermented soft-ripened cheese produced 
empirically in several regions of Algeria. Originally, “Bouhezza” 
was traditionally the product of the processing of goat milk 
and sheep, but the current trend seems to be towards the use of 
cow milk (Aissaoui Zitoun et al., 2011, 2012; Licitra et al., 2019; 
Medjoudj et al., 2017a, b). In this study, we have elaborated the 
traditional fabrication diagram of this cheese from a field survey, 
and then we have produced the “Bouhezza” cheese from cow’s 
milk, goat’s milk and sheep’s milk. Before cheese making, the raw 
milk from the tree species (cow, goat and sheep) was analyzed 
(physical, chemical, and microbiological properties). The cheese 
is obtained after transformation of the “Lben” in a “Chekoua” 
made of goatskin. Draining, salting and refining “Bouhezza” are 
performed simultaneously in the “Chekoua”. During the ripening 
period, “Lben” and milk are added to the contents of the “Chekoua”.

Results from the physicochemical and bacteriological 
analysis of milk show that all criteria analyzed respond almost 
to the required standard. The sensory qualities of the three 
types of cheese show that cow cheese was classified as the most 
satisfactory cheese for the majority of criteria (taste. color and 
texture). Based on a rate of return equivalent to that obtained 
in our milk production trials, the cheese processing seems 
very viable and cost-effective for the breeder better than their 
marketing as raw milk.
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Abstract: The indigenous cattle populations are threatened by extinction in many countries of the
Mediterranean area. The objective of this study is the analysis of local cattle breeds’ production
systems in Algeria, Greece, and Tunisia and the identification of their future challenges and oppor-
tunities. A total of 385 surveys were conducted in these study areas: central and northern Greece
(43); northern and northwestern Tunisia (167), and northeastern Algeria (175). Data collected con-
cerned socio-economic parameters as well as the production system’s functionality, constraints, and
opportunities. Results revealed an average farmers’ age of 52.6 years old. The illiteracy rate is
high, especially in Algeria (39%) and Tunisia (44%), where the farm size is relatively small with
an average of 14 and four animals per farm, respectively. In Greece, much higher numbers were
recorded (89 animals/farm). The average cultivated feedstuffs’ area is larger in Greece (12.07 ha)
and smaller in Algeria and Tunisia (6.11 and 2.88 ha, respectively). Feeding resources are based on
rangelands. Farming systems are traditional extensive and complemented when needed. Milk and
meat marketing vary throughout countries and are not well valorized. The main constraints are high
feeding costs, low milk and meat prices, and absence of labeling. Local and local-crossbred bovine
populations could be valorized based on their good adaptation criteria when applying convenient
genetic and development strategies.

Keywords: indigenous; cattle; Mediterranean; opportunities; challenges

1. Introduction

The indigenous cattle production systems contribute to milk and meat supply and
represent an essential source for many communities in rural areas in the Mediterranean
countries [1]. These populations are extremely valuable both at the local and regional level
since they combine unique qualities: a valuable locally adapted genetic pool, substantial
income to the local economies, and added-value animal products. Nevertheless, their
numbers are declining due to the preference of farmers toward foreign, more productive
breeds. Especially in the Mediterranean countries, the indigenous cattle breeds’ populations
face continuous challenges such as fear of extinction, anarchic breeding schemes, and
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harsh rearing conditions [2]. Generally, the global livestock sector is characterized by a
growing contrast between livestock kept extensively by a large number of smallholders
and pastoralists (600 million) in support of rural food security and livelihoods, and those
kept in intensive commercial production systems [2,3]. In Southern Africa, over 90% of
animal keepers are classified as smallholders and 75% of the farm animals, which largely
consists of indigenous breeds, belong to the smallholder sector [4].

In Greece, the indigenous cattle populations have decreased to small numbers and are
currently at risk of extinction, or already extinct, due to socio-economic reasons, geographic
isolation, and crossbreeding with commercial breeds [5]; in 2020, four indigenous breeds
were referred according to the Domestic Animal Diversity Information System of FAO
(as provided by the Greek Ministry of Agriculture). They are used exclusively for meat
production: the “Greek Red” (42,057 females), the “Vrahykeratiki” (9546 females), the
“Katerinis” (728 females), and “Sykias” breed (2851 females) [6]. These animals are reared
essentially in the mountainous grasslands. They are raised all year in the fields and housed
only in extreme weather conditions. They are held in rough housing, and their dietary
needs are covered mostly by grazing, while complementary feed is provided only in the
winter. In past decades, the importation and use of foreign breeds and the disorganized
breeding schemes have resulted in a great variety of phenotypes [1]. In the last 20 years,
conservation programs have been set up to safeguard the indigenous populations.

In Tunisia, the indigenous cattle population with Iberian origin counts 191,920 females which
are mainly (87%) localized in the north, especially in the mountainous area (120,000 heads). In
this zone, indigenous cattle breeds contribute to 15–26% of the milk and meat production.
This population has suffered from anarchic crossing, which affected its genetic structure [7].
Nevertheless, studies concerning this breed were mostly interested in genetic aspects. In
fact, two breeds were identified: Atlas Brown and Blonde of Cap Bon. Moreover, the
population of Atlas Brown has been declining over the years, and the population of the
Blonde of Cap Bon is very limited, indicating that it is exposed to extinction [7]. The
study of phenotypic variability based on a qualitative description of the characters showed
that the differences between individuals are mainly manifested through the color and the
general conformation of the animals.

Algerian indigenous cattle populations resemble the Atlas Brown, with pure bred
animals still preserved in the mountainous regions. They are subdivided into several sub-
populations, namely “Guelmoise”, “Cheurfa”, “Krouminiène”, “Chelifienne”, “Sétifienne”,
and “Djerba”, which are clearly differentiated phenotypically [8]. These populations are
characterized by their rusticity, and they constitute a very important socio-economic ele-
ment, contributing to a large part to the feeding of the rural population [1,9]. Indeed, these
populations have brought together qualities of adaptation to the harsh arid and semi-arid
environment and to the food resources restriction [10–12]. Despite the perfect harmony
between these indigenous cattle populations and their natural environment, productivity
remains modest (1175 litter/cow/year [13]) both because of the often unfavorable rearing
conditions and the low performance of the concerned breeds. Several trials for dairy inten-
sification, based mainly on the importation of exotic breeds and the anarchic crossbreeding
with the indigenous populations, led to a deterioration of the genetic structure of the dairy
herd in Algeria, which resulted in a drastic fall in the numbers of local cattle. Thus, the
percentage of indigenous cattle breeds’ population is reduced from 82% of the total in 1986
to about 48% of the total in 2016 [14,15].

Therefore, the concept of the scientific cooperation project BOVISOL (Breeding and
management practices of indigenous bovine breeds: Solutions toward a sustainable future)
arose as a necessity between the partners (Algeria, Greece, and Tunisia) to preserve these
populations by trying to find the best tools that will improve the production systems in
terms of productivity and sustainability. The general aim of this project was to contribute
to the sustainability of the indigenous bovine breeds’ production systems by taking into
account the adaptability of the animals to the local environment, the quality of the ani-
mal products, and the economic and cultural value of the systems. After all, as also very
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well documented by [16], it is not an easy task to balance between the values of biodiver-
sity, cultural heritage, and productivity, as these values are differently perceived by the
stakeholders in the sector.

There were three specific objectives of this work:

- socio-economic identification of the breeders of the indigenous cattle populations in
the different study areas.

- analytical description of the existing farm and breeding practices.
- identification of constraints and proposition of solutions that will promote the sustain-

ability of these production systems in the context of the climate change challenges.

2. Materials and Methods
2.1. Location of the Study Areas, Farmers Sampling, and Data Collection

In each country, the local Data Protection Board (DPB) and the local Ethics Committee
have approved experimental protocols. The study involved data collection from different
farms, and participants were informed of the purpose of the project; they have given their
consent for their participation (complete the survey questionnaire and/or provide a sample
of the milk) and the use of data collected and generated for scientific publications.

Study areas concerned regions in the three countries where indigenous cattle breeding
and rearing is usually practiced. The collected data comprised a total of 385 questionnaires
answered by owners or people who are responsible on the farms for the indigenous or
crossbred cattle randomly selected from different villages in the study area. In Greece, the
study was carried out in the central and northern Greece regions of Thessaly, Macedonia,
and Thrace from March 2018 to May 2019. These study areas are known for their high den-
sity of cattle population. Cattle farms were selected taking into account the representation
of all major indigenous cattle breeds, farm sizes, and typical Greek geographical conditions.
In Tunisia, the study was carried out from January 2019 to June 2021. Surveys were con-
ducted in two regions located in the north and northwestern Tunisia: Sejnan (Bizerte) and
Tabarka-Ain Draham (Jendouba). These regions are plains and mountainous areas known
for the predominance of indigenous and crossbred indigenous cattle breeding. In Algeria,
surveys were conducted in the region of Guelma, Skikda, Annaba, and Bordj Bou Arréridj
in northeast of the country from June 2018 to May 2019. The region is characterized by a
subhumid climate in the center and in the north and semi-arid in the south. The climate is
mild and rainy in winter and hot and dry in summer.

In all three countries, data were collected through direct interviews, using a quasi-
structured questionnaire and personal observation at each visit during the study period.
The interviewers followed a participatory way, where breeders had been asked to provide
demographic information regarding the age, the education level, economic activities, as
well as data regarding the livestock management as well as breeding and feeding practices.

2.2. Statistical Analyses

Details on the farms’ structure, the breeds, the animals’ performances, production
systems, and market channels were digitized in spreadsheets (MS EXCEL 2016) separately
for each country and coded, entered, corrected, and validated by the research team in
accordance to the common format of the three countries before being imported in IBM SPSS
Statistics package version 25 (IBM SPSS, 2017). From the 91 initial variables produced from
the questionnaires, 17 variables were removed either due to missing data from one or two
of the countries (more than 50% missing values in one country) or containing information
irrelevant to the present study, mainly because the farmers found it difficult to understand
the meaning of the questions. New variables were computed, where necessary, by combin-
ing variables from the questionnaires in order to reduce the data presented and to produce
clearer results. Analysis was proceeded with quality control, corrections, and further vali-
dations. Farms with missing values were removed from the database. The custom tables
function was used in IBM SPSS Statistics package version 25 (IBM SPSS, 2017) in order to
create tables presenting all the results between the countries, and the created tables were
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imported in spreadsheets (MS EXCEL 2016) to produce the figures. Additionally, Pearson’s
chi-squared test was used to determine whether there was a statistically significant dif-
ference between the countries regarding the categorical variables and one-way analysis
of variance (ANOVA) to determine whether there was a statistically significant difference
between the countries regarding the continuous variables. A SWOT analysis was finally
carried out relative to the sustainability of the indigenous cattle production systems in the
study area, utilizing the data used in the previous parts of the work.

3. Results and Discussion
3.1. Farmers’ Socio-Economic Identification

The main characteristics of farmers’ identity are reported in Table 1. Results show that
indigenous cattle farming is the main occupation for 82.3% of farmers, and 69% of them
have a successor in the farm, which is a number that is greater in the North African countries
(Table 1). Especially for Greece, the lower proportions of the existence of successors in
the farms are a serious constraint factor, since particularly younger individuals reject
traditional livestock farming because of the harsh working conditions and the low social
status associated with this occupation [17]. The average age of the farmers is 52 years, and
most of them are married (89%) with an average of three children.

Table 1. Socio-economic identification of farmers who participated in the survey.

Country Farmers’
Average Age Married Farmers Number of

Children
Successor in the

Farm

Farmers’ with
More than 20

Years’
Experience

Farmers Working
Full Time in

Livestock

One-way
ANOVA F(2,
380) = 4.582,

p < 0.05

Chi-
Square = 14.577;
df (2); p < 0.01;

Cramer’s
V = 0.195

One-way
ANOVA F(2,
382) = 32.615,

p < 0.01

Chi-
Square = 17.517;
df (2); p < 0.01;

Cramer’s
V = 0.213

Chi-
Square = 34.770;
df (4); p < 0.01;

Cramer’s
V = 0.215

Chi-
Square = 69.033;
df (2); p < 0.01;

Cramer’s
V = 0.423

Algeria 55.0 91.4% 4.0 74.3% 66.9% 56.6%
Greece 48.3 79.1% 1.6 51.2% 63.6% 100.0%
Tunisia 53.6 96.4% 2.8 82.0% 41.9% 90.4%

Overall Average 52.6 89.0% 3.2 69.2% 57.5% 82.3%

df: degree of freedom.

An attention-grabbing figure in the current study is the relatively high illiteracy rate,
especially in Algeria (39%) and Tunisia (44%). Low literacy is a concept often observed
in rural areas in Algeria and Tunisia, and it is partly explained by the farms’ location in
remote areas, without schools and cultural centers [18,19]. Even in Greece, where 80% of
farmers have completed the basic education, only a very small percentage (5%) indicated
that they have received some kind of training related to animal breeding. This is quite
interesting, since it has been proven that there is a significant positive relationship between
the level of farmers’ education and the level of productivity [20], while value addition can
also be promoted through training and capacity building [21].

In Tunisia and Algeria, more than 70% of the surveyed farmers opt for this profession
due to heritage, while in Greece, the principal reason for this choice is the love for the
profession (49%). Profit as a reason for practicing the profession varied throughout the three
countries: 28% in Greece, 30% in Algeria, and only 5% in Tunisia, which was probably due to
the limited productive performances of the indigenous cattle breeds (Chi-square = 275.687;
df (18); p < 0.01; Cramer’s V = 0.600) (Figure 1).

With respect to the reasons for choosing the indigenous versus the commercial breeds,
the majority of farmers in Algeria and Tunisia (72.6% and 98.8%, respectively) chose the
breeds’ adaptation characteristics (Table 2). Moreover, more than 50% of the investigated
farmers in the different countries indicated that they chose these breeds because of their
productive performances, although there may be a misinterpretation between the perfor-
mances (quantity of product produced) and robustness of the breeds. In Greece, where
there are European and state funding conservation programs, 5% of the farmers mentioned
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that they are practicing this activity due to the subsidies, which was a relatively low pro-
portion that was expected to be higher. Even though the farmers do not admit it openly, it
has been reported that the conservation of indigenous breeds may not be viable without
economic support [22].
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Figure 1. Reasons of practicing indigenous cattle farming in the study area.

Table 2. Reasons of choosing the indigenous cattle breeds (percentage of breeders).

Adaptation Performances Subsidies

Algeria 72.6% 53.7% 0.0%
Greece 20.9% 51.2% 4.7%
Tunisia 98.8% 64.7% 0.0%

3.2. General Characterization of the Indigenous Cattle Production Systems
3.2.1. Farm Size and Type

Table 3 presents the main elements of farm sizing in the three studied countries. In
terms of animal population, in Tunisia and Algeria, the farm size is relatively small with an
average of four and 14 indigenous cows per farm, while in Greece, the respective figure is
much higher (89 animals per farm). This is also depicted in the total farm area as well as
the average number of cattle per hectare.

Table 3. Farm structure in the three countries.

Algeria Greece Tunisia

Average cattle number per farm One-way ANOVA F(2, 381) = 183.688, p < 0.01 13.97
(14.62) *

88.90
(72.6) *

3.76
(4.78) *

Total area of the farm (ha) One-way ANOVA F(2, 336) = 19.801, p < 0.01 21.24
(16.17) *

8.85
(13.29) *

12.41
(11.87) *

Cattle per ha One-way ANOVA F(2, 335) = 79.485, p < 0.01 0.72
(0.63) *

15.53
(19.40) *

0.91
(0.89) *

Area cultivated for feedstuffs (ha) One-way ANOVA F(2, 351) = 14.883, p < 0.01 6.11
(5.82) *

12.07
(12.55) *

2.88
(3.26) *

Own cultivated area (%) One-way ANOVA F(2,312) = 81.738, p < 0.01 62.95
(38.30) *

56.63
(37.52) *

100.00
(0.00) *

* Numbers in brackets represent standard deviations of the means.

In all three countries, the farmers cultivate feedstuffs in order to cover the feeding
needs of the animals in a more efficient way than just purchasing the necessary feedstuffs
from the market. The average cultivated area for feedstuffs is larger in Greece (12.07 ha) and
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smaller in Algeria and Tunisia (6.11 and 2.88 ha, respectively). In Tunisia, the cultivated area
is totally owned by the farmer, while in Algeria and Greece, the farmers own approximately
half of the cultivated area and rent the other half from other individuals (Table 3).

Results from the survey showed that relatively small proportions of the farmers reared
other cattle breeds in the past, especially in Algeria (25%) and Greece (19%), indicating
a close bond between the farmer and the breed (Chi-square = 224.157 ; df (2); p < 0.01;
Cramer’s V = 0.763). Nevertheless, in Tunisia, the interviewed farmers have chosen to
crossbreed the indigenous cattle with commercial cattle breeds in an attempt to improve
their productivity.

For the three countries (Algeria, Greece, and Tunisia), the indigenous cattle feeding
resources are based on rangelands and pastures with concentrate feed complementation
when needed during the critical climatic and physiological periods.

In Algeria, in more than 53% of farms, the cattle flocks are never stabled throughout
the year (Figure 2). In Greece, the majority of farmers choose to stable the animals during
the night (for protection from predators) and in the winter, while in Tunisia, the animals
are stabled only at night. This is probably due to the different climate conditions in the
two African countries, where there is no need to confine the animals, since the winter
is relatively mild in contrast to Greece (Chi-square = 362.927; df (6); p < 0.01; Cramer’s
V = 0.687).
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In all three countries, the farmers cultivate feedstuffs in order to cover the feeding 
needs of the animals in a more efficient way than just purchasing the necessary feedstuffs 
from the market. The average cultivated area for feedstuffs is larger in Greece (12.07 ha) 
and smaller in Algeria and Tunisia (6.11 and 2.88 ha, respectively). In Tunisia, the culti-
vated area is totally owned by the farmer, while in Algeria and Greece, the farmers own 
approximately half of the cultivated area and rent the other half from other individuals 
(Table 3). 

Results from the survey showed that relatively small proportions of the farmers 
reared other cattle breeds in the past, especially in Algeria (25%) and Greece (19%), indi-
cating a close bond between the farmer and the breed (Chi-square = 224.157 ; df (2); p < 
0.01; Cramer’s V = 0.763). Nevertheless, in Tunisia, the interviewed farmers have chosen 
to crossbreed the indigenous cattle with commercial cattle breeds in an attempt to im-
prove their productivity. 

For the three countries (Algeria, Greece, and Tunisia), the indigenous cattle feeding 
resources are based on rangelands and pastures with concentrate feed complementation 
when needed during the critical climatic and physiological periods. 

In Algeria, in more than 53% of farms, the cattle flocks are never stabled throughout 
the year (Figure 2). In Greece, the majority of farmers choose to stable the animals during 
the night (for protection from predators) and in the winter, while in Tunisia, the animals 
are stabled only at night. This is probably due to the different climate conditions in the 
two African countries, where there is no need to confine the animals, since the winter is 
relatively mild in contrast to Greece (Chi-square = 362.927; df (6); p < 0.01; Cramer’s V = 
0.687). 
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Figure 2. Periods of the indigenous cattle stabling in the different study countries (percentage
of breeders).

Two types of cattle housings were found in the different study areas: concrete or built
housing and loose housing that is more frequent in both Algeria and Greece (Figures 3 and 4).
In Tunisia, two types of stables are used, but in 66.5% of the surveyed farms, local and
crossbred cattle are housed in concrete stables, and 33.5% of them are housed in loose
housing (Chi-square = 35.812; df (2); p < 0.01; Cramer’s V = 0.306) (Figure 3).
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3.2.2. Labor Force and Farming Practices

In the study area, farming is carried out almost exclusively by the family members
with an average size of 1.1, 1.44, and 2.25, respectively, in Algeria, Greece, and Tunisia.
External workers are rarely encountered in the interviewed farms. Daily and seasonal tasks
differ from one country to another but some of them are practiced in the same way, such as
the daily animals’ watering and grazing, which is seasonal in 28% of the Greek interviewed
farms and daily in Algeria and Tunisia (Chi-square = 32.914; df (2); p < 0.01; Cramer’s



Sustainability 2022, 14, 3356 8 of 16

V = 0.293). Stables’ cleaning is generally a daily activity in Tunisia (100%) and seasonal
in Greece (81.3%) and in Algeria (87.4%) (Chi-square = 312.196; df (4); p < 0.01; Cramer’s
V = 0.637). Feed supplementation is seasonal in Tunisia (100%) and Algeria (98.3%) and is
not applied in the majority of the Greek visited farms (72%) (Chi-square = 388.251; df (6);
p < 0.01; Cramer’s V = 0.710). Milking is also a seasonal task in both Algeria (72%) and
Tunisia (100%); nevertheless, it is not practiced in Greece (94%), since the main direction of
the production system is meat production (Chi-square = 272.750; df (4); p < 0.01; Cramer’s
V = 0.595). Dehorning and males castrating are never applied on the Tunisian cattle males,
which is not the case in Algeria, where these two tasks are almost seasonal, and in Greece,
where they are applied only by few farmers (11.6% and 2.3%, respectively, for dehorning
and castrating practices).

As showed in Figure 5, animals’ allocation in different groups is more practiced by the
Algerian surveyed breeders (50%). In Greece, they just separate pregnant cows (14%) or
animals that will be fattened (16%). Nevertheless, in Tunisia, no separation is practiced,
which is generally related to the farms’ small sizes and then to the limited area and feeding
resources dedicated to these animals (Chi-square = 338.062; df (22); p < 0.01; Cramer’s
V = 0.765).

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 17 
 

3.2.2. Labor Force and Farming Practices 
In the study area, farming is carried out almost exclusively by the family members 

with an average size of 1.1, 1.44, and 2.25, respectively, in Algeria, Greece, and Tunisia. 
External workers are rarely encountered in the interviewed farms. Daily and seasonal 
tasks differ from one country to another but some of them are practiced in the same way, 
such as the daily animals’ watering and grazing, which is seasonal in 28% of the Greek 
interviewed farms and daily in Algeria and Tunisia (Chi-square = 32.914; df (2); p < 0.01; 
Cramer’s V = 0.293). Stables’ cleaning is generally a daily activity in Tunisia (100%) and 
seasonal in Greece (81.3%) and in Algeria (87.4%) (Chi-square = 312.196; df (4); p < 0.01; 
Cramer’s V = 0.637). Feed supplementation is seasonal in Tunisia (100%) and Algeria 
(98.3%) and is not applied in the majority of the Greek visited farms (72%) (Chi-square = 
388.251; df (6); p < 0.01; Cramer’s V = 0.710). Milking is also a seasonal task in both Algeria 
(72%) and Tunisia (100%); nevertheless, it is not practiced in Greece (94%), since the main 
direction of the production system is meat production (Chi-square = 272.750; df (4); p < 
0.01; Cramer’s V = 0.595). Dehorning and males castrating are never applied on the Tuni-
sian cattle males, which is not the case in Algeria, where these two tasks are almost sea-
sonal, and in Greece, where they are applied only by few farmers (11.6% and 2.3%, respec-
tively, for dehorning and castrating practices). 

As showed in Figure 5, animals’ allocation in different groups is more practiced by 
the Algerian surveyed breeders (50%). In Greece, they just separate pregnant cows (14%) 
or animals that will be fattened (16%). Nevertheless, in Tunisia, no separation is practiced, 
which is generally related to the farms’ small sizes and then to the limited area and feeding 
resources dedicated to these animals (Chi-square = 338.062; df (22); p < 0.01; Cramer’s V = 
0.765). 

 
Figure 5. Animal’s allotment in the surveyed farms. 

Only 17% and 14% of the breeders in Algeria and Greece, respectively, declare that 
they do not purchase feedstuff to meet their animals’ needs. In the other farms, feeding 
management is based on in-farm produced concentrate (32%) and straw (98%) and pur-
chased by-products (44%), concentrate (38%), and straw (44%) in Algeria. Animals’ feed-
ing is based on purchased hay (100%), concentrate (100%), and straw (100%) in Tunisia 
where the main cultivated feedstuff for this kind of production system is the berseem (Tri-
folium alexandrinum) especially in the larger size farms where irrigation is possible. In 
Greece, the cultivated feedstuff is relatively diversified since alfalfa, corn, triticale, barley, 

54
.8

6%

3.
43

%

26
.2

9%

18
.8

6%

1.
14

%

0.
00

%

69
.8

0%

16
.2

8%

0.
00

%

0.
00

%

0.
00

%

18
.6

0%

10
0.

00
%

0.
00

%

0.
00

%

0.
00

%

0.
00

%

0.
00

%

0%

20%

40%

60%

80%

100%

120%

No cattle groups Fattening 
animals

Milking cows Females fresh 
from calving

Quarantine Pregnant cows

ALGERIA GREECE TUNISIA

Figure 5. Animal’s allotment in the surveyed farms.

Only 17% and 14% of the breeders in Algeria and Greece, respectively, declare that
they do not purchase feedstuff to meet their animals’ needs. In the other farms, feeding
management is based on in-farm produced concentrate (32%) and straw (98%) and pur-
chased by-products (44%), concentrate (38%), and straw (44%) in Algeria. Animals’ feeding
is based on purchased hay (100%), concentrate (100%), and straw (100%) in Tunisia where
the main cultivated feedstuff for this kind of production system is the berseem (Trifolium
alexandrinum) especially in the larger size farms where irrigation is possible. In Greece, the
cultivated feedstuff is relatively diversified since alfalfa, corn, triticale, barley, and peas are
cultivated respectively by 24%, 33%, 62%, and 28.6% of the interviewed farmers.

After birth, calves take colostrum directly in all the cases in the different study areas
(100%). After that, they continue suckling their mothers in all the Greek and Tunisian farms
but only in Algeria, they receive colostrum for 24 h after birth and generally continue to
receive milk powder (95%) during a period of two months. The average weaning age is
about four months and varies from 197.5 days in Greece to 213 days in Tunisia and to
221 days in Algeria (one-way ANOVA F(2, 377) = 1.572, p = 0.209). Weaning is natural in
most cases and forced in respectively 9%, 21%, and 19% of the surveyed farms in Algeria,
Greece, and Tunisia (Chi-square = 7.688; df (2); p < 0.005; Cramer’s V = 0.141).
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3.2.3. Reproduction and Breeding Management

Reproduction management is basic in the indigenous cattle farms and mainly refers to
estrus and pregnancy detection as well as carvings grouping. In Greece, only a few farms
use bulls to detect estrus, perform feeding supplementation, and perform calving grouping.
In Algeria, almost all the breeders use bulls to detect estrus and also perform pregnancy
detection. Nevertheless, in Tunisia, the indigenous and crossbred cattle breeders apply just
the estrus detection (Figure 6).
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Figure 6. Reproduction practices in the surveyed farms.

As shown in Table 4, in the three countries, females enter into reproduction at an
average age of 15 months ± 3.5. The average fertility and abortion rates are, respectively,
81.5% and 2%. Calving interval is relatively large (17.5 ± 5 months).

Table 4. Reproduction parameters in the surveyed farms.

Age of Heifers’ Entry into
Breeding (Months) Fertility Rate (%) Abortion Rate (%) Calving Interval

(Months)

Mean 14.88
(3.41) *

81.47
(6.51) *

1.85
(3.77) *

17.34
(4.98) *

N 375 203 33 381

* Numbers in brackets represent standard deviations of the means.

The majority of the interviewed breeders in Algeria (86%) and Greece (98%) keep
more than 18% of the owned cattle females and males for replacement, which was lower in
Tunisia (65%), but with no significant differences between the countries (one-way ANOVA
F(2, 364) = 0.920, p = 0.399). Replacement selection criteria are mainly animal phenotype in
Tunisia (81%), animal growth performances in Algeria (66%), and parents’ performances
in Greece (81%), which confirm that the indigenous cattle breeding management and
objectives are more or less the same in these three countries (Chi-square = 345.791; df (14);
p < 0.01; Cramer’s V = 0.671).

The basis for every well-designed breeding program is reliable data recording. Unfor-
tunately, in Algeria and Tunisia, data recording in the farm was rarely performed (< 20%),
which could be related to the general limited educational level of the indigenous cattle
farmers. Nevertheless, in Greece, 78% of the farmers say that they record data on their
farms. These data concerned the farm activities (16%), reproduction (84%), health (62.5%),
and feedstuff use (91%) in the Greek farms, while in Algeria, only the financial data (100%)
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were recorded, and in Tunisia, only information about the farm activities (100%) were
recorded. About 62% of the Greek breeders are part of the national performances recording
program, and more than 80% of them participate in a genetic resources’ conservation pro-
gram, which is a fact that is rarely seen in the African countries. Nevertheless, in all three
countries, the animals’ weights are usually estimated visually, and no means of animal
identification is used, with the exception of Greece, where all farms use ear tags.

3.2.4. Production Systems Directions and Products’ Commercialization

In Greece, the local cattle breeds are farmed exclusively for meat production, while
in Algeria and Tunisia, the animals are farmed for both meat and milk production in the
majority of farms (80.6% and 92.2%, respectively) (Table 5). This could be partly explained
by the low meat and milk performances of these breeds, which oblige the farmers to profit
from both the milk and meat performances of these flocks in order to increase their revenue.

Table 5. Production systems’ objectives (percentage of breeders).

Objective(s) Breeding
Animals

Meat
Production

Milk
Production

Meat and Milk
Production

Country
Algeria 5.7% 3.4% 10.3% 80.6%
Greece 0.0% 100.0% 0.0% 0.0%
Tunisia 0.0% 0.0% 7.8% 92.2%

The lack of a proper selection scheme in smallholder areas results in poor growth rates
and possible inbreeding in cattle [23]. In Greece, the average slaughter age of the animals is
18.5 months at an average weight of 309 kg. In Tunisia and Algeria, the respective slaughter
age is 17 months and 64 months, respectively, and the average weight is 250 kg and 172 kg,
respectively (one-way ANOVA for slaughter age F(2, 370) = 362.649, p < 0.01; one-way
ANOVA for slaughter weight F(2, 337) = 133.883, p < 0.01).

Periods of animals’ commercialization differ from one country to another. In Alge-
ria and Greece, most of the fattened indigenous cattle are commercialized occasionally
throughout the year, while in Tunisia, all the interviewed breeders affirm that they sell
these animals during the summer, especially for wedding occasions. In Algeria and Greece,
20% of the breeders have sales contracts for animals or products with butchers (94% of the
Algerian breeders) or with the animal traders (85% of the Greek breeders) which is not the
case in Tunisia, where selling practices are carried out privately between the breeders and
their clients (consumers or animal traders) or in the local markets (Chi-square = 560.320;
df (10); p < 0.01; Cramer’s V = 0.916).

Products certification is only encountered in 11.6% of the Greek farms, even though
all the interviewed breeders in the three countries believe that their product is of higher
quality. In addition, only 17% of the Greek breeders affirmed that the products’ prices
are affected by their quality. Finally, in Algeria and Tunisia, breeders of the indigenous
cattle do not belong to any organizational structure and do not practice any associative
activity. Conversely, in Greece, 26.3% of the breeders are part of cooperatives that enable
beneficiating from the technical consulting when needed from the cooperative, private, or
public entities.

3.3. Production Systems Constraints and Improvement Ways

The limiting constraints to the indigenous cattle production systems encountered in
Algeria, Greece, and Tunisia are presented in Figure 7, as perceived by the surveyed farmers.
All the farmers agreed that a major constraint of the production system is the increased feed-
ing cost (Chi-square = 73.749; df (2); p < 0.01; Cramer’s V = 0.916). In Algeria and Tunisia,
another major constraint is the low productivity of the animals (Chi-square = 298.615;
df (2); p < 0.01; Cramer’s V = 0.884), while both Greek and Tunisian farmers agree that the
selling prices are low (Chi-square = 284.436; df (2); p < 0.01; Cramer’s V = 0.863). The diffi-
cult management of the animals is moderately discussed by Greek and Algerian farmers
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(Chi-square = 108.588; df (2); p < 0.01; Cramer’s V = 0.533), while the Tunisian ones care
more about the other costs of the production system (Chi-square = 152.661; df (2); p < 0.01;
Cramer’s V = 0.632) as well as for the lack of rules in the market (Chi-square = 251.980;
df (2); p < 0.01; Cramer’s V = 0.812).
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Figure 7. Limiting constraints in the studied production systems.

Figure 8 presents the farmers opinions regarding what actions could improve the
outcome of the production systems. All farmers agree that higher selling prices (Chi-
square = 45.103; df (2); p < 0.01; Cramer’s V = 0.343) and state funding (Chi-square = 73.896;
df (2); p < 0.01; Cramer’s V = 0.439) would be two major steps in the right direction. In
Greece, product certification (Chi-square = 101.108; df (2); p < 0.01; Cramer’s V = 0.513) and
advertisement (Chi-square = 68.196; df (2); p < 0.01; Cramer’s V = 0.421) are also proposed
as solutions while in all the countries, the genetic improvement of animals is moderately
appreciated (Chi-square = 100.123; df (2); p < 0.01; Cramer’s V = 0.511).

3.4. Opportunities toward Sustainable Indigenous Cattle Production Systems

Both in Europe and North Africa, indigenous cattle breeds are an essential supplier
of food, agricultural power, agrarian culture and heritage, and genetic biodiversity [23].
Indeed, animal genetic diversity allows farmers to set up selection programs in collabora-
tion with the specialized services or to develop new breeds in response to the continuously
varying conditions associated to climate change, new or growing disease dangers, new
knowledge of human nutritional requirements, and fluctuating market conditions or chang-
ing societal needs. It is important to develop concerted, coordinated, and comprehensive
farmer training, research, and development programs to address these constraints for the
breeders of the indigenous cattle populations that developed their own behavior to adapt
with the unstable environmental and economic conditions. An integrated approach with
due consideration to proper feeding, breeding, healthcare, and improved management
practices are recommended to address the future challenges for sustainable conservation of
these native breeds [24]. Subsequently, developing this sector needs both state interventions
and adequate farmers’ behaviors and activities to be implemented and applied.
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Figure 8. Farmers suggested improvement ways of the studied production systems.

3.4.1. State Funding

The agricultural policies in general lacked the necessary stakeholder support, both
financial and moral, or commitment [25], which is also clear by the small involvement
of the state especially in Tunisia and Algeria, where 100% and 66.3%, respectively, of the
interviewed farmers stated the need of improvement in the form of state funding. Then, the
state must have the leading role in the conservation of animal genetic resources; preserving
their legacy for the future generations as a safety belt for the ever-changing environmental
conditions is for the greater good. Under this context, it is necessary that the state funds
such actions as well as supports financially the farmers that participate in such programs.
Nevertheless, the safeguarding of the indigenous cattle breeds through programs and
funding is mandatory to include all the relevant actors and foremost the farmers that must
actively participate in all the steps. The tools provided should focus not only on conserving
the breeds but also improving the management and productivity of the farms as well as
preserving the characteristics of the local production systems while implementing current
and future innovations. The key action that will ensure the survival of the production
systems and the breeds is to find the proper balance between tradition and innovation.
The indigenous breeds are highly connected to the local geographical, social, cultural,
and economic conditions, and it is in the hands of the state and all the relevant actors to
highlight and promote them to future generations.

3.4.2. Genetic Improvement of the Animals

The conservation of indigenous cattle breeds is critical for reversing the unprecedented
loss of diversity and ensuring the security of cattle genetic resources for economic, eco-
logical, and social benefits [26]. Genetic improvement programs must be organized and
supervised by the state but implemented by farmers through collective organs. The genetic
improvement of animals is a long process with additive results that usually takes years
to be quantified and standardized and is important to be treated as such. In the case of
indigenous breeds, the main goals would be the following:

- to clearly characterize the breeds and, in cases of crossbred populations,
- to stabilize the breeds,
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- to take advantage of their close connection to the local environment and improve their
adaptation characteristics, identified, especially in Algeria and Tunisia, as the main
reason for choosing the indigenous breeds (72.6% and 98.8%, respectively), and

- to improve their productivity, which was reported by all farmers (100%) as a limiting
factor in Algeria and Tunisia, without compromising their unique characteristics. In
order to successfully implement genetic improvement programs, the active participa-
tion of all the famers of each breed is mandatory in order to have a complete register
of the animals, along with accurate recording of their characteristics, performance,
and environmental parameters. The responsible state bodies should supervise, co-
ordinate, and control the peripheral actions taken by individual farmers and their
collective organs.

An urgent need to establish a conservation plan that includes a well-designed genetic
management program for the Tunisian indigenous cattle population was already underlined
by [27,28]. This was not expressed by Tunisian breeders (10.8%) that are unaware of the
effect of uncontrolled crossbreeding that could easily result in the extinction of the breeds
and lack of programs, and when asked about the possible improvement ways, they do not
mention the animals’ genetic improvement in contrary to farmers in Algeria (62.3%) or
in Greece (54.8%). It is important to mention that only farmers in Greece participate in a
genetic resources conservation program (80% of the interviewed farmers) and performances
recording program (62% of the interviewed farmers).

3.5. Farmers’ Behaviors and Activities
3.5.1. Farmers Professional Organization

As presented in the results, few farmers in Greece (26.3%) and no farmers in Algeria
and Tunisia are part of organizational or professional group. Motivation and sensitization of
the breeders to join breeder’s cooperatives or associations and farmers training to transform
indigenous cattle milk into cheese or other milk derivatives are vital.

3.5.2. Animal Management Practices

As presented in the results, the management practices of indigenous breeds are far
from being the optimum for the animals, which is partly due to the traditional character
of the production systems. It is indicative that most farmers (96.6% in Algeria, 67.5% in
Greece, and 100% in Tunisia) chose feeding costs as a limiting constraint, leaving room
for improvement. Additionally, important reproduction practices are not performed in all
three countries, with Tunisian farmers only performing estrus detection (100%), a small
proportion of Greek farmers (less than 32%) performing increase feeding during estrus and
estrus and pregnancy detection, and most of the Algerian farmers performing pregnancy
detection (71.4%) and estrus detection (100%). Finally, most of the farmers in all three
countries do not allocate animals in different groups (54.8% in Algeria, 69.8% in Greece,
and 100% in Tunisia). Thus, small changes in the management practices, without altering
the identity of the production systems, could have a great impact on the productivity and
the overall welfare of the animals. The changes that are more easily applied, according to
the information collected through the questionnaires, are the following:

(a) Improvement of the feeding of the animals with an overall goal to cover the needs
of the animal at every production stage with a focus on young animals, females in gestation,
and fattening cattle;

(b) Booster feeding before mating could improve the reproduction parameters of
the animals;

(c) Control the females’ insemination and natural mating;
(d) Better management of newly born calves in terms of feeding and hygiene in order

to decrease infant mortality;
(e) Grouping of the animals in critical periods of their life such as gestation and calving.
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3.5.3. Products Marketing, Certification, and Advertising

It is a common belief among farmers and consumers that the products of indigenous
breeds are of high quality, but for most breeds, there is very little evidence that can support
such a claim. However, the marketing of these products remains fragmented, as this
sector is unsatisfactorily organized. Product certification and product advertisement were
suggested as a way of improvement from farmers in all three countries (48.0% and 57.7%,
respectively, in Algeria, 69% and 73.8% in Greece, 97% and 95.8% in Tunisia) Thus, it
would be for the benefit of all the stakeholders to participate and, if possible, co-fund
research projects that would evaluate the quality of the products and promote their unique
characteristic and quality. Moreover, as the next step, the farmers could use the results
of such projects in order to advertise their products and promote their advantages to the
consumers. This would subsequently increase the demand for the products and create a
brand name that would be recognizable and desirable by the consumer. As a result, this
would also improve the selling prices for the products and the overall income of the farmer.
The market promotion of these products will help to incorporate them into a profitable
value chain. In this context, more milk and meat quality studies have to be carried out
before studying the possibilities of certifying these local products (AOC, IG, AOP, IGP) and
labeling, taking into account the consumers’ expectations and preferences.

Table 6 presents a SWOT analysis related with the sustainability of the indigenous
cattle production systems in the study area, utilizing the data used previously and results
and discussion that preceded.

Table 6. SWOT analysis of the indigenous bovine production systems toward a sustainable develop-
ment in Algeria, Greece, and Tunisia.

Strengths Weaknesses

X Economic axis
� Indigenous cattle activity is a source of income
� Lower dependency on external inputs in

marginalized areas

� Absence of financial support to small farmers
� Low products’ selling prices
� Absence of products’ certification
� Management practices are not optimized

X Social axis
� Breeders attachment to continue practicing this

activity
� Inherited or/and own investment activity

� Low social value of this activity
� Farmers aging
� Absence of farmers’ training in rearing and farm

management techniques

X Environmental axis
� Valuable genetic pool adapted to local and

harsh environment
� Genetic resources conservation programs

� Problems related to the use of common lands
� Over-use of grazing lands
� The increase in the inbreeding level
� Difficult to monitor animals that graze in far and

difficult to access rangelands

Opportunities Threats

X Economic axis

� Distinction of specific products issued from
these production systems (milk and meat)

� Possibilities of breeders associations’ creation
and products’ prices increase

� Large increase in animals feed
� Higher external inputs’ prices
� Lower profitability of this activity

X Social axis

� Increasing human populations in the
marginalized areas

� Increasing the employment rate in these zones
� Reducing the rural exodus
� Consumers’ demand for specific zones’

products

� High rate of abandonment of this livestock
activity

� Guidance of farmers to other activities

X Environmental axis � Considering the eco-systems particularities to
advertise the products’ quality

� Local cattle breeds are in danger of extinction
� Higher level of inbreeding rate
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4. Conclusions

The results of the current study show that although smallholder indigenous cattle
populations in Algeria, Tunisia, and Greece still exist, their productivity is limited by
several constraints that include low performances, limited feed availability, and poor
marketing. In addition, the erosion of indigenous cattle populations genetic resources is
becoming a serious problem especially in Tunisia. The conservation of these cattle genetic
resources could be imperative, as these have been shown to be a useful integral part of agro
ecosystems in smallholder areas. The reasons for conserving these flocks vary from their
current utilization to the ability to meet future challenges in a dynamic environment. There
is a big policy gap in the studied countries, especially Tunisia and Algeria, with regard
to the genetic conservation programs. The costs of conservation activities can be met by
increasing the market value of indigenous cattle products so that they eventually become
self-sustaining. This requires the identification of the beef breeds, their characterization,
and the development of marketable products from these breeds. There is a factual necessity
to apply breed conservation strategies through securing long-term funding, revamping
institutional activities, training technical personnel, and the co-ordination of management
efforts, which will promote the conservation of the indigenous cattle populations and
improve the sustainable development of these production systems.
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